首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   99篇
林业   180篇
农学   78篇
基础科学   19篇
  397篇
综合类   52篇
农作物   343篇
水产渔业   277篇
畜牧兽医   285篇
园艺   21篇
植物保护   90篇
  2023年   17篇
  2022年   64篇
  2021年   75篇
  2020年   76篇
  2019年   90篇
  2018年   122篇
  2017年   134篇
  2016年   126篇
  2015年   57篇
  2014年   97篇
  2013年   196篇
  2012年   111篇
  2011年   122篇
  2010年   94篇
  2009年   68篇
  2008年   101篇
  2007年   61篇
  2006年   35篇
  2005年   16篇
  2004年   12篇
  2003年   13篇
  2002年   8篇
  2001年   3篇
  2000年   10篇
  1998年   1篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1972年   1篇
  1939年   1篇
排序方式: 共有1742条查询结果,搜索用时 203 毫秒
31.
Different spices, dry fruits and plant nuts commonly consumed in Pakistan were assayed for the heavy metals cadmium, lead, copper, zinc, iron and manganese by the potentiometric stripping analysis and AA spectrophotometry. The results revealed wide variation in heavy metal content among different biological materials. Mixed spices generally exhibited higher value for trace metals specially lead (6.6–9.2 µg/g), cadmium (0.65–1.34 µg/g), iron (142.3–285.0 µg/g) and zinc (64.2–65.8 µg/g). Dry fruits contained relatively lesser amounts of heavy metals than plant nuts. Almonds contained higher levels of lead (1.02 µg/g) and cadmium (0.24 µg/g) than other nuts and dry fruits.  相似文献   
32.
A 5‐week study was performed to evaluate the effect of spoilage date extract (SDE) as the biofloc carbon source on Litopenaeus vannamei (5.4 ± 0.3 g) performance. The two levels of dietary protein (15% and 25% crude protein) and two carbohydrate sources (molasses‐M and SDE‐P) were tested including: M15, M25, P15 and P25. The minimum (0.2 ± 0.0 mg/L) and the maximum (0.5 ± 0.0 mg/L) of total ammonia nitrogen were observed in the P15 and M25 groups respectively. The highest protein efficiency ratio (6.1 ± 0.3) and protein productive value (112.3 ± 5.8%) were found in the P15 group (p < 0.05). No significant difference was found between biofloc treatments in the expression of cathepsin L gene in hepatopancreas (p > 0.05). The number of total haemocyte count (THC), semigranular cells (SGC) and granular cells (GC) of shrimp in SDE‐based biofloc treatments was relatively higher than those in molasses‐based biofloc treatments. Following the white spot syndrome virus (WSSV) challenge, a significant decrease in THC, SGC, GC and hyaline cell values was observed in all treatments (p = 0.001). Plasma biochemical parameters were significantly influenced by dietary protein levels, biofloc carbon sources as well as WSSV challenge test. In conclusion, SDE successfully could be used as an alternative carbon source for establishing a biofloc system in L. vannamei production.  相似文献   
33.
Background:Immobilization is an approach in industry to improve stability and reusability of urease. The efficiency of this technique depends on the type of membrane and the method of stabilization. Methods:The PEI-modified egg shell membrane was used to immobilize urease by absorption and glutaraldehyde cross-linking methods. The membranes were characterized by FTIR and AFM, and Nessler method was applied to measure the kinetic of the immobilized enzymes. Finally, the storage stability (6 °C for 21 days) and reusability (until enzyme activity reached to zero) of the immobilized enzymes were investigated. Results:Based on FTIR, three new peaks were observed in both the absorption- (at 1389.7, 1230.8, and 1074.2 cm-1) and the cross-linking (at 1615-1690, 1392.7, 1450 cm-1) immobilized enzymes. The surface roughness of the native membrane was altered after PEI treatment and enzyme immobilization. The optimal pH of cross-linking immobilized enzymes was shifted to a more neutral pH, while it was alkaline in adsorption-immobilized and free enzymes. The reaction time decreased in all immobilized enzymes (100 min for free enzyme vs. 60 and 30 min after immobilizing by adsorption and cross-linking methods, respectively). The optimal temperature for all enzymes was 70 °C and they had a higher Km and a lower Vmax than free enzyme. The stability and reusability of urease were improved by both methods. Conclusion:Our findings propose these approaches as promising ways to enhance the urease efficiency for its applications in industries and medicines. Key Words: Egg shell, Immobilization, Polyethylenimine, Urease  相似文献   
34.
The effects of irrigation water rates and seed bed shapes on changes in soil water and salinity status, bulk density, root growth and dry matter (DM) weights of wheat plants (Triticum aestivum L.) were investigated with a split plot design in a field trial in Zahak Agricultural Research Station in Sistan, Iran in 2005. Irrigation intervals after 80 and 160 mm evaporation from class A evaporation pan were used as main plot. Flat surface, single, triple, and six-row beds with a 20 cm row space were used as subplots. Each treatment was replicated four times. Volumetric soil water content and soil electrical conductivity (EC) were measured using Time Domain Reflectometry (TDR) at 0 —20, 20 —40 and 40 —60 cm depths at nine different times during the growing season. Soil water contents were also measured at 0 —10 and 10 —20 cm depths using standard sampling rings at four different times. The three and six-row beds increased the EC of the saturated paste extract with the more frequent irrigation intervals in this coarse textured soil. Soil water content, DM, and root density were always greater with the more frequent irrigations (shorter irrigation intervals). Root density was greatest in 0 —20 cm depth with the single row bed treatment. Grain yield and root density were greatest with single row bed treatment due to the bed shape at the root development stage (possibly due to a reduced mechanical resistance). A greater soil water content by the short irrigation interval increased grain yield and root density via reducing mechanical resistance. With the loamy sand, bulk density and mechanical resistance increased rapidly after cultivation. Bed shape at root development stage might have enhanced root growth and the crop yields. Apparently, mechanical resistance was the most limiting factor with these loamy sand soils than salinity.  相似文献   
35.
The Penman–Monteith (FAO-56 PM) equation is suggested as the standard method for estimating evapotranspiration (ET0) by the International Irrigation and Drainage Committee and Food and Agriculture Organization (FAO). On the other hand, the Hargreaves–Samani (HS) equation is an alternative method compared with the FAO-56 PM equation. In the present study, the original coefficient C of the HS equation is calibrated based on the FAO-56 PM equation for estimating the reference ET0 from 15 meteorological stations in central Iran (about 170,000 km2) under semiarid and arid conditions. After calibration, the new values for C are ranged from 0.0018 to 0.0037. The mean bias error (MBE), the root mean square error (RMSE), and the ratio of average estimations of ET0 (R) values for all stations are ranged from 0.12 to 5.38, ?5.35 to 1.15 mm d?1 and 0.64 to 1.28 for the HS equation and from 0.12 to 2.48, ?2.2 to 0.60 mm d?1, and 1.00 to 1.05 for the calibrated Hargreaves–Samani equation (CHS), respectively. Results indicate that the average RMSE and MBE values are decreased by 40% and 66%, respectively. Relationships for calibrating the C coefficient on the basis of annual average of daily temperature range (ΔT) and wind speed (V) are proposed, calibrated, and validated. Hence, the CHS equation can be used for ET0 estimates with acceptable accuracy instead of the FAO-56 PM method.  相似文献   
36.
Manure urea pellets were produced and their nitrogen release rate was evaluated in soil incubation at different water contents of 90, 75, and 60% soil filed capacity (FC). In another experiment, sweet basil growth was evaluated during eight months (with three shoot harvests) under the pellet application. The nitrogen release and pellet dispersion rates were slow after two months or at lower soil water content (60% FC), but they were significant after four months of soil incubation, or at higher soil water content (75 or particularly 90% FC). Application of pelleted urea reduced plant growth and yield at first harvest than urea treatment. However, at second and particularly at third harvest (and the average of three harvests) significant improvement in growth parameters of SPAD value, leaf area, plant height, shoot fresh weight, pot yield, and` leaf N and K concentrations were achieved by application of pelleted urea fertilization.  相似文献   
37.
Soil particle size distribution (PSD) is a fundamental physical property affecting other soil properties. Characterizing spatial variability of soil texture is very important in environmental research. The objectives of this work were: 1) to partition PSD of 75 soil samples, collected from a flat field in the University of Guilan, Iran, into two scaling domains using a piecewise fractal model to evaluate the relationships between fractal dimensions of scaling domains and soil clay, silt, and sand fractions and 2) to assess the potential of fractal parameters as an index used in a geostatistical approach reflecting the spatial variability of soil texture. Features of PSD of soil samples were studied using fractal geometry, and geostatistical techniques were used to characterize the spatial variability of fractal and soil textural parameters. There were two scaling domains for the PSD of soil samples. The fractal dimensions of these two scaling domains (D1 and D2) were then used to characterize different ranges of soil particle sizes and their relationships to the soil textural parameters. There was a positive correlation between D1 and clay content (R2 = 0.924), a negative correlation between D1 and silt content (R2 = 0.801), and a negative correlation between D2 and sand content (R2 = 0.913). The geometric mean diameter of soil particles had a negative correlation with D1 (R2 = 0.569) and D2 (R2 = 0.682). Semivariograms of fractal dimensions and soil textural parameters were calculated and the maps of spatial variation of D1 and D2 and soil PSD parameters were provided using ordinary kriging. The results showed that there were also spatial correlations between D1 and D2 and particle size fractions. According to the semivariogram models and validation parameters, the fractal parameters had powerful spatial structure and could better describe the spatial variability of soil texture.  相似文献   
38.
Proper doses of nitrogenous fertilizer are most important for rice production system because a large part of the nitrogen may be lost if it is not applied judiciously. A study was conducted covering five blocks of Balasore and two blocks of Bhadrak districts. Soil samples were collected randomly, and field visit was conducted during peak vegetative stage of rice. Two approaches have been used in this study for estimating the site-specific nitrogen (N) requirement in the study area. In one approach, geostatisical analysis and kriging was used to develop the soil test–based N recommendation map by which a minimum of 72 kg N ha?1 and maximum of 94 kg N ha?1 were recommended. In a second approach, remote sensing was used and N recommendation map was developed using the moderate-resolution imaging spectroradiometer (MODIS) leaf area index (LAI) and normalized difference vegetation index (NDVI) satellite data, and a minimum requirement of 60 kg N ha?1 and maximum of 120 kg N ha?1 was estimated through this approach.  相似文献   
39.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   
40.
Abstract

A water culture pot experiment was conducted to analyze the effects of N application during the ripening period (RP) on photosynthesis, dry matter production, and its impact on grain ripening and yield in two semidwarf indica type varieties viz. Gui Zhao 2 (GZ) and BR3 (BR) compared with a japonica type variety Koganemasari (KO) under four N rates viz. 0 (N0), 10 (N10), 20 (N20), and 40 (N40) mg L?1. Results showed that N application enabled to maintain a higher leaf area and delay leaf senescence in both indica and japonica type varieties but the decrease in the rate, of leaf area was higher in the former than in the latter and the rate was reduced with increasing N rates. Flag leaf photosynthesis and SPAD values of N treated plants were higher throughout the RP, showing the presence of a significant correlation either for each variety or all the varieties together. Higher photosynthetic rate was supported by higher leaf chlorophyll (SPAD value basis) content, stomatai conductance, and N concentration in leaf blades. Top dry matter content increased with increasing N rates mainly due to mean leaf area rather than NAR except for BR during RP but it was higher in KO than in GZ and BR. Reduction of shoot weight due to translocation of dry matter to panicles during RP was suppressed by N rates both in GZ and BR while shoot weight increased in the N-treated plants in KO. The dependency of KO on current photosynthates for panicle weight was found to be almost hundred percent while the contribution of stored carbohydrates in shoot before heading to panicle weight in GZ and BR was in the range of 4-27 and 33-54%, respectively and the rest was contributed by current photosynthates. The percentage increased with increasing N rates. Percentage of ripened grains (PRG) increased with increasing N rates in GZ and BR due to the increase in dry matter production and in the photosynthetic rates of apex leaves, despite the larger spikelet number and larger hull size. However, KO showed almost no variation although it had the highest PRG among the varieties. Brown rice yield followed the same pattern as that of PRG in GZ and BR and the highest yield was produced by BR followed by GZ and KO. These results suggest that N application during RP was more effective in increasing yield in the semidwarf indica type varieties than in the japonica type variety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号