全文获取类型
收费全文 | 1094篇 |
免费 | 69篇 |
国内免费 | 1篇 |
专业分类
林业 | 47篇 |
农学 | 24篇 |
基础科学 | 3篇 |
225篇 | |
综合类 | 120篇 |
农作物 | 64篇 |
水产渔业 | 138篇 |
畜牧兽医 | 459篇 |
园艺 | 15篇 |
植物保护 | 69篇 |
出版年
2022年 | 6篇 |
2021年 | 14篇 |
2020年 | 20篇 |
2019年 | 24篇 |
2018年 | 15篇 |
2017年 | 13篇 |
2016年 | 16篇 |
2015年 | 16篇 |
2014年 | 18篇 |
2013年 | 41篇 |
2012年 | 39篇 |
2011年 | 49篇 |
2010年 | 29篇 |
2009年 | 21篇 |
2008年 | 68篇 |
2007年 | 63篇 |
2006年 | 87篇 |
2005年 | 71篇 |
2004年 | 75篇 |
2003年 | 83篇 |
2002年 | 73篇 |
2001年 | 8篇 |
2000年 | 14篇 |
1999年 | 17篇 |
1998年 | 11篇 |
1997年 | 14篇 |
1996年 | 16篇 |
1995年 | 7篇 |
1994年 | 7篇 |
1993年 | 15篇 |
1992年 | 12篇 |
1991年 | 10篇 |
1990年 | 12篇 |
1989年 | 6篇 |
1988年 | 6篇 |
1987年 | 9篇 |
1986年 | 8篇 |
1984年 | 12篇 |
1983年 | 6篇 |
1982年 | 9篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1978年 | 8篇 |
1973年 | 5篇 |
1953年 | 5篇 |
1948年 | 6篇 |
1947年 | 6篇 |
1946年 | 5篇 |
1945年 | 7篇 |
1942年 | 5篇 |
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
101.
102.
Carlos Alberto Scapim Cleso Antônio Patto Pacheco Antônio Teixeira do Amaral Júnior Rafael Augusto Vieira Ronald José Barth Pinto Thiago Vincenzi Conrado 《Euphytica》2010,174(2):209-218
In plant breeding, correlations between the statistics of stability and adaptability of popcorn cultivars are not yet well
understood. Therefore, the objectives of the present experiment was to investigate the correlations between sdi2 \sigma_{\rm di}^{2} and bi \beta_{\rm i} from Eberhart and Russell, ωi from Wricke,
\textS\texti(1) {\text{S}}_{\text{i}}^{(1)} ,
\textS\texti(2) {\text{S}}_{\text{i}}^{(2)} and
\textS\texti(3) {\text{S}}_{\text{i}}^{(3)} from Huehn, Pi from Lin and Binns and the rank-sum from Kang, and indicate the most reliable method for selecting popcorn cultivars. These
statistics were estimated by data of crop yield from 19 Brazilian genotypes under 21 environments and popping expansion under
16 environments. The ωi,
\textS\texti(1) {\text{S}}_{\text{i}}^{(1)} ,
\textS\texti(2) {\text{S}}_{\text{i}}^{(2)} ,
\textS\texti(3) {\text{S}}_{\text{i}}^{(3)} and sdi2 \sigma_{\rm di}^{2} were positively and significantly correlated indicating that just one in these five statistics is sufficient for selecting
stable genotypes although they were not correlated with the means of crop yield and popping expansion. The bi \beta_{\rm i} was negatively and significantly correlated with Pi for crop yield indicating that the most adaptable genotypes tend to have the lowest estimates of Pi. Although Pi was not correlated with ωi,
\textS\texti(1) {\text{S}}_{\text{i}}^{(1)} ,
\textS\texti(2) {\text{S}}_{\text{i}}^{(2)} ,
\textS\texti(3) {\text{S}}_{\text{i}}^{(3)} , or sdi2 \sigma_{\rm di}^{2} statistics, it displayed positive correlation with the Index 1 (crop yield and popping expansion +
\textS\texti(1) {\text{S}}_{\text{i}}^{(1)} rank) and Index 2 (crop yield and popping expansion + Wi) indicating that superior popcorn genotypes are also stable. Finally, both Pi and the rank-sum are useful statistics in breeding programmes where crop yield, popping expansion and stability are essential
traits for selecting genotypes. 相似文献
103.
Plants can acquire carbon from sources other than atmospheric carbon dioxide (CO(2)), including soil-dissolved inorganic carbon (DIC). Although the net flux of CO(2) is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues. We tested the ability of Pinus taeda L. seedlings exposed to (13)C-labeled soil DIC and two NH(4)(+) availability regimes to take up and fix soil DIC. We also measured the concentration and distribution of the fixed soil DIC within the plant and mycorrhizal tissues, and quantified the contribution of soil DIC to whole-plant carbon (C) gain. Seedlings exposed to labeled DIC were significantly enriched in (13)C compared with seedlings exposed to unlabeled DIC (6.7 versus -31.7 per thousand). Fixed soil DIC was almost evenly distributed between above- and belowground biomass (55 and 45%, respectively), but was unevenly distributed among tissues. Aboveground, stem tissue contained 65% of the fixed soil DIC but represented only 27% of the aboveground biomass, suggesting either corticular photosynthesis or preferential stem allocation. Belowground, soil DIC had the greatest effect (measured as (13)C enrichment) on the C pool of rapidly growing nonmycorrhizal roots. Soil DIC contributed approximately 0.8% to whole-plant C gain, and approximately 1.6% to belowground C gain. We observed a slight but nonsignificant increase in both relative C gain and the contribution of soil DIC to C gain in NH(4)(+)-fertilized seedlings. Increased NH(4)(+) availability significantly altered the distribution of fixed soil DIC among tissue types and increased the amount of fixed soil DIC in ectomycorrhizal roots by 130% compared with unfertilized seedlings. Increased NH(4)(+) availability did not increase fixation of soil DIC in nonmycorrhizal roots, suggesting that NH(4)(+) assimilation may be concentrated in ectomycorrhizal fungal tissues, reflecting greater anaplerotic demands. Soil DIC is likely to contribute only a small amount of C to forest trees, but it may be important in C fixation processes of specific tissues, such as newly formed stems and fine roots, and ectomycorrhizal roots assimilating NH(4)(+). 相似文献
104.
In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about their long-term viability. Though lichens have a rich history as air pollution indicators, we believe that they may also be useful as a metric of community diversity associated with habitat change. We established 47 plots in the Bear River Range of northern Utah and southern Idaho to evaluate the effects of forest succession on epiphytic macrolichen communities. Plots were located in a narrow elevational belt (2134–2438 m) to minimize the known covariant effects of elevation and moisture on lichen communities. Results show increasing total lichen diversity and a decrease in aspen-dependent species as aspen forests succeed to conifer cover types. The interactive roles of stand aspect, basal area and cover of dominant trees, stand age, aspen bark scars, and recent tree damage were examined as related to these trends. We developed an aspen index score based on lichens showing an affinity for aspen habitat (Phaeophyscia nigricans, Physcia tenella, Xanthomendoza fulva, Xanthomendoza galericulata) and found a significant negative relationship between the index and successional progression. Indicator species analysis showed the importance of all stages of aspen-conifer succession for lichen community diversity and highlighted the decline of aspen-dependent species with advancing succession. We present a landscape-level community analysis of lichens in the context of a conceptual model for aspen succession for the southern Rocky Mountains. We conclude that while total number of lichen species increases with succession, aspen-dependent species cover and richness will decline. In this way, epiphytic lichens communities may constitute an effective indicator of community-level diversity in for aspen-dependent species at-large. 相似文献
105.
Gregg R. Sanford Joshua L. Posner Ronald T. Schuler Jon O. Baldock 《Soil & Tillage Research》2008,100(1-2):42-53
As stocking rates on Wisconsin dairy farms continue to increase, one possible nutrient management solution is to haul slurry to nearby grain farmer's fields. Although the nutrient and soil building benefits of manure are well known, many grain farmers are hesitant to apply manure on their fields due to potential soil compaction. Studies were initiated to evaluate the effects of tanker-applied slurry on soil compaction and corn (Zea mays L.) yield. An on-station trial was established to address the issues of compaction caused by manure tankers, repeated traffic associated with field headlands, and the possible ameliorating effect of manure itself on corn yield. In addition, 15 replicated on-farm trials were established to evaluate the impact of single pass manure applications on soil compaction and yield. These predominately fall applications were conducted when the host farmer felt that the soil would support tanker traffic. Due to its portability and instrument sensitivity, compactness was evaluated with a data-logging hand held penetrometer.Results from the on-station trial indicate that multiple passes did increase compactness above single-pass traffic and the check. The slurry itself did not attenuate the effect of traffic on soil compaction, nor on yield. Despite yield reductions estimated from in-track samples in both years of 6% (one-pass traffic) and 22% (six-pass traffic) in this study, whole plot corn yields were not reduced due to compaction. The on-farm trials indicated that manure application technique does affect compaction patterns; with broadcast application resulting in less area trafficked by the tanker than injection application, and therefore less area compacted. The narrower gauge truck tires used at some sites led to significantly higher penetrometer readings compared to the control, but this was not the case at sites with wider tractor tires. As in the on-station work, although compaction led to higher penetrometer readings, whole plot corn yields in compacted plots were not adversely affected compared to the control. These results suggest that, in the first year after slurry application, on predominantly prairie derived soils; well-timed applications of dairy slurry do not cause extensive soil compaction nor a reduction in corn yields. This study did not look at the potential residual effects that may positively (>soil organic matter) or negatively (residual soil compaction) impact subsequent crops. 相似文献
106.
Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice 总被引:8,自引:0,他引:8
M. L. P. Abenes R. E. Tabien S. R. McCouch R. Ikeda P. Ronald G. S. Khush N. Huang 《Euphytica》1994,76(1-2):81-87
Summary The classical genetic map and molecular map of rice chromosome 11 were oriented to facilitate the use of these maps for genetic studies and rice improvement. Three morphological markers (d-27, z-2, and la) were crossed to a rice breeding line, IRBB21, which has the Xa-21 gene for bacterial blight resistance. Three F2 populations were analyzed with RFLP markers known to be located on chromosome 11. Segregation analysis of molecular markers and morphological markers was used to construct an RFLP map for each population. The recombination frequency between markers varied from population to population although the marker order on the maps was the same for all three populations. Based on a common set of markers mapped in the three populations, an integrated map was generated consisting of both RFLP and morphological markers. The genetic distance between markers on this map was determined by taking a weighted average of the data from the three populations. The oriented map serves as a bridge to understand the relationship between the classical and molecular linkage maps. Based on this information, the location of several genes on the classical map can be approximated with respect to RFLP markers without having to map them directly. 相似文献
107.
Penoxsulam (trade name Granite) is a new acetolactate synthase (ALS) inhibitor herbicide for postemergence control of annual grasses, sedges, and broadleaf weeds in rice culture. This study was done to understand the equilibrium phase partitioning of penoxsulam to soil and air under conditions simulating California rice field conditions. Partitioning of penoxsulam was determined between soil and water (Kd) by the batch equilibrium method and between air and water (K(H)) by the gas-purge method. In four representative soils from the Sacramento Valley, the Kd values ranged from 0.14 to 5.05 and displayed a modest increase with soil pH. In soil amended with manure compost, soil sorption increased 4-fold with increasing soil organic matter content, but was still low with a Kd of 0.4 in samples with high organic carbon contents of 15%. Penoxsulam was confirmed to be extremely nonvolatile and did not partition into air at any measurable rate at 20 or 40 degrees C. K(H) (pH 7) was estimated at 4.6 x 10(-15) Pa x L x mol(-1) on the basis of available water solubility and vapor pressure data. The results imply that soil and air partitioning of penoxsulam do not significantly affect its potential for degradation or offsite movement in water. 相似文献
108.
Ronald P. Neilson 《Water, air, and soil pollution》1993,70(1-4):659-673
A new biogeographic model, MAPSS, predicts changes in vegetation leaf area index (LAI), site water balance and run off, as well as changes in Biome boundaries. Potential scenarios of equilibrium vegetation redistribution under 2 × CO2 climate from five different General Circulation Models (GCMs) are presented. In general, large spatial shifts in temperate and boreal vegetation are predicted under the different scenarios; while, tropical vegetation boundaries are predicted (with one exception) to experience minor distribution contractions. Maps of predicted changes in forest LAI imply drought-induced losses of biomass over most forested regions, even in the tropics. Regional patterns of forest decline and dieback are surprisingly consistent among the five GCM scenarios, given the general lack of consistency in predicted changes in regional precipitation patterns. Two factors contribute to the consistency among the GCMs of the regional ecological impacts of climatic change: 1) regional, temperature-induced increases in potential evapotranspiration (PET) tend to more than offset regional increases in precipitation; and, 2) the unchanging background interplay between the general circulation and the continental margins and mountain ranges produces a fairly stable pattern of regionally specific sensitivity to climatic change. Two areas exhibiting among the greatest sensitivity to drought-induced forest decline are eastern North America and eastern Europe to western Russia. Drought-induced vegetation decline (losses of LAI), predicted under all GCM scenarios, will release CO2 to the atmosphere; while, expansion of forests at high latitudes will sequester CO2. The imbalance in these two rate processes could produce a large, transient pulse of CO2 to the atmosphere. 相似文献
109.
Vasquez ME Holstege DM Tjeerdema RS 《Journal of agricultural and food chemistry》2011,59(6):2486-2492
The microbial degradation of etofenprox, an ether pyrethroid, was characterized under anaerobic (flooded) and aerobic (nonflooded) California rice field soil conditions by determination of its half-life (t1/2) and dissipation rate constant (k) and identification and quantification of degradation products at both 22 and 40 °C using LC-MS/MS. The overall anaerobic t1/2 at 22 °C ranged from 49.1 to 100 days (k=-0.0141 to -0.0069 days(-1)) compared to 27.0 days (k=-0.0257 days(-1)) at 40 °C, whereas under aerobic conditions the overall t1/2 was 27.5 days (k=-0.0252 days(-1)) at 22 °C compared to 10.1-26.5 days (k=-0.0686 to -0.0262 days(-1)) at 40 °C. The biphasic dissipation profiles were also fit to a first-order model to determine the t1/2 and k for both the fast and slow kinetic regions of the dissipation curves. Hydroxylation at the 4'-position of the phenoxy phenyl ring was the major metabolic process under anaerobic conditions for both 22 °C (maximum% yield of applied etofenprox mass=1.3±0.7%) and 40 °C (max % yield=1.2±0.8%). Oxidation of the ether moiety to the ester was the major metabolite under aerobic conditions at 22 °C (max% yield=0.5±0.1%), but at 40 °C increased amounts of the hydroxylated form were produced (max% yield=0.7±0.2%, compared to 0.3±0.1% for the ester). The hydrolytic product of the ester, 3-phenoxybenzoic acid (3-PBA), was not detected in any samples. Sterilized control soils showed little etofenprox degradation over the 56-day incubation period. Thus, the microbial population in a flooded soil was able to transform and contribute to the overall dissipation of etofenprox. The simulated summer temperature extreme (40 °C) increased the overall degradation. 相似文献
110.
Eklou A. Somado Kanwar L. Sahrawat Ronald F. Kuehne 《Biology and Fertility of Soils》2006,43(1):124-130
Experiments were conducted during 1996–1998 in screen house and in the field in the humid forest zone of Côte d’Ivoire, to evaluate the effects of phosphorus (P) from phosphate rock (PR) on the performance of the root nodulating legume Crotalaria micans grown for 8 weeks. The experimental soils were acid Ultisols with <4 mg/kg extractable Bray-1 P. Tilemsi PR from Mali and triple superphosphate (TSP) were applied at 60 kg P ha?1 (screen house) and 90 kg P ha?1 (field) to the legume. Legume N-fixed (BNF) was estimated by the 15N-isotope dilution and δ 15N natural abundance methods, using Cassia obtusifolia L. as a non-fixing legume reference plant. Without P supply, and under the field conditions, C. micans produced less than 1 tonne of biomass and accumulated 29 kg N/ha. The application of PR-P enhanced legume N by about fourfold over the unfertilised control. There was no significant difference between the effects of TSP and PR. Phosphorus application mainly affected the total amount of N accumulated rather than the percentage derived from the atmosphere (%N dfa) per se. Furthermore, the cumulative effects of PR-P on the performance of C. micans greatly improved with time in the screen house. This study confirms that Tilemsi PR is an agronomically effective source of P for short-duration legume green manure (GM) even in the first year of its application to acid P-deficient soils in the West African humid zone. 相似文献