首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16661篇
  免费   15篇
  国内免费   2篇
林业   3646篇
农学   1301篇
基础科学   139篇
  2800篇
综合类   730篇
农作物   2122篇
水产渔业   1800篇
畜牧兽医   1126篇
园艺   1117篇
植物保护   1897篇
  2022年   8篇
  2021年   14篇
  2020年   14篇
  2019年   9篇
  2018年   2751篇
  2017年   2708篇
  2016年   1184篇
  2015年   73篇
  2014年   29篇
  2013年   19篇
  2012年   806篇
  2011年   2139篇
  2010年   2110篇
  2009年   1263篇
  2008年   1327篇
  2007年   1588篇
  2006年   39篇
  2005年   107篇
  2004年   108篇
  2003年   164篇
  2002年   71篇
  2001年   11篇
  2000年   45篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1993年   12篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   13篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1977年   5篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   6篇
  1967年   2篇
  1965年   1篇
  1958年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
871.
Eighty-eight aromatic cultivars collected from Maharashtra state were assessed for determinants of kernel quality (kernel size-shape, test weight and aroma) and grain morphology such as awning, lemma and palea characters, pubescence, colour of sterile lemma and apiculus colour. We, report seven cultivars—‘Girga’, ‘Kothmirsal’, ‘Kala bhat’, ‘Chimansal’, ‘Jiri’, ‘Kalsal’ ‘Velchi’ and ‘Kali kumud’ as indigenous to southern India. Of the 69 cultivars characterized for agronomic traits 36 cultivars were exquisite genotypes and possessed one or more superior traits such as early flowering, dwarf stature, higher number of productive tiller per plant; long panicles; higher number of filled grains per panicle and strong aroma. Variability in aromatic cultivars was assessed on the basis of nine traits placed aromatic rice cultivars in five clusters. Number of cultivars in each cluster ranged from 1 to 33. 27 significant correlations were obtained in the physical, agronomic and grain morphology traits. Aroma was found to be negatively associated with days to 50% flowering as well as with filled grains per panicle. However, correlation between panicle length and effective tillers with aroma was not observed. Therefore, to increase the yield, improvement in length of panicle and increasing number of productive tillers in medium or mild scented cultivars would be the best strategy.  相似文献   
872.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development. The objective of this study was to identify novel quantitative trait loci (QTL) associated with improved heat tolerance in wheat (Triticum aestivum L.) and to confirm previous QTL results. To accomplish this, a recombinant inbred line (RIL) population was subjected to a three-day 38°C daytime heat stress treatment during early grain-filling. At maturity, a heat susceptibility index (HSI) was calculated from the reduction of three main spike yield components; kernel number, total kernel weight, and single kernel weight. The HSI, as well as temperature depression (TD) of the main spike and main flag leaf during heat stress were used as phenotypic measures of heat tolerance. QTL analysis identified 14 QTL for HSI, with individual QTL explaining from 4.5 to 19.3% of the phenotypic variance. Seven of these QTL co-localized for both TD and HSI. At all seven loci, the allele for a cooler flag leaf or spike temperature (up to 0.81°C) was associated with greater heat tolerance, indicated by a lower HSI. In a comparison to previous QTL results in a RIL population utilizing the same source of heat tolerance, seven genome regions for heat tolerance were consistently detected across populations. The genetic effect of combining three of these QTL, located on chromosomes 1B, 5A, and 6D, demonstrate the potential benefit of selecting for multiple heat tolerance alleles simultaneously. The genome regions identified in this study serve as potential target regions for fine-mapping and development of molecular markers for more rapid development of heat tolerant germplasm.  相似文献   
873.
Self-incompatibility (SI) is a widespread mechanism in flowering plants that promotes outbreeding and thereby increases genetic diversity. Recognition specificity in Brassica is achieved by the interaction of the female determinant S-receptor kinase (SRK) and its ligand, the male determinant S-locus protein 11 (SP11). The interaction between SP11 and SRK triggers the signaling cascade in an S-haplotype-specific manner and results in the rejection of self-pollen, but the signal components involved are still not well characterized. S haplotypes are widespread in self-compatible amphidiploid B. napus, and the interaction of heterozygous S haplotypes causes the loss of SI. This review highlights the recent advances made towards understanding the genetic analysis, distribution, and evolution of S haplotypes, the signal factors, and the potential of SI in B. napus hybrid breeding program.  相似文献   
874.
An Agrobacterium-mediated transformation procedure for soybean [Glycine max L. Merrill] proliferating somatic embryos is here described. The Agrobacterium tumefaciens LBA4404 strain harboring pTOK233, pCAMBIA1390-olp or pH7WG2Dwrky plasmids was used to mediate gene transfer into the plant genome. Prior to Agrobacterium inoculation, proliferative soybean embryogenic clusters were microwounded by DNA-free tungsten particle bombardment. Three independent transformation experiments were performed. In Experiment I, 26 transgenic plants were obtained from a unique clone of cv Bragg, while 580 plants were recovered from 105 clones of cv IAS5. In Experiment II, a single hygromycin-resistant clone of cv BRSMG68 Vencedora was recovered and gave rise to five plants. In Experiment III, 19 plants of cv Bragg and 48 plants of IAS5 were recovered, representing five and 14 independent transformation events, respectively. PCR and Southern analyses confirmed the transgenes’ integration into plant genomes. Transgenic plants were fertile. They flowered, set pods and seeds. Transgene segregation in two T1 progenies fits the Mendelian pattern (3:1 transgenic:non-transgenic plants). This is the first report of transgenic fertile soybean plants obtained from somatic embryogenic tissues transformed by the system that combines DNA-free particle bombardment and Agrobacterium.  相似文献   
875.
Shelley Jansky 《Euphytica》2011,178(2):273-281
Valuable genetic diversity in diploid wild Solanum species can be accessed through crosses to haploids (2n = 2×) of the tetraploid cultivated potato, Solanum tuberosum. Haploid-wild species hybrids segregate for the ability to tuberize in the field. In addition, they vary in male fertility, vine size, stolon length, and tuber size. In this study, three haploids were crossed with nine diploid wild Solanum species and 27 hybrid families were evaluated in the field for two years. The proportion of male fertile hybrid clones varied depending on the wild species parent. A large effect of the female parent was detected for vine size, stolon length, tuber size, percent tuberization, and percent plants selected for agronomic quality. An exceptional haploid (US-W4) was identified for the production of agronomically desirable haploid-wild species hybrids. In hybrids derived from US-W4, differences among wild species parents were observed for agronomic quality. Superior hybrids were produced by S. berthaultii and S. microdontum. Reciprocal crosses were evaluated for a subset of families. When the wild species was used as the female parent, male fertility was restored, but tuberization and tuber size were reduced. Careful selection of both haploid and wild species parents can result in a large proportion of fertile, agronomically desirable hybrid offspring.  相似文献   
876.
Drought stress is a major abiotic constraint limiting crop production worldwide. Screening for drought tolerance and the traits that enhance drought tolerance is not straightforward in large mapping populations. In this study, we investigated the possibility of screening a mapping population in vitro for PEG-induced water deficit stress and recovery potential. We have measured several shoot and root growth parameters or traits in the C × E diploid potato mapping population. Significant variation was observed for genotype-specific responses to water deficit and recovery potential. Genetic variation and heritability estimates were high to very high for the measured traits depending on growth conditions. In order to identify potato QTLs for drought tolerance and recovery potential an SNP marker-rich integrated linkage map was used. A total of 23 QTLs were detected under control, stress and recovery treatments explaining 10.3–22.4% of the variance for each phenotypic trait. Among these, 10 QTLs were located on chromosome 2. Three QTLs involved in the important trait root to shoot ratio were identified on linkage groups 2, 3 and 8. These loci explained together 41.1% of the variance for this trait, and may be breeding targets for stress tolerance and yield in the field as well. The SNP markers derived from EST sequences underlying these QTLs led to the identification of putative candidate genes for further study in potato. This study constitutes the first knowledge of in vitro screening of a mapping population for drought tolerance in potato.  相似文献   
877.
Chickpea (Cicer arietinum L.) is known to be salt-sensitive and in many regions of the world its yields are restricted by salinity. Recent identification of large variation in chickpea yield under salinity, if genetically controlled, offers an opportunity to develop cultivars with improved salt tolerance. Two chickpea land races, ICC 6263 (salt sensitive) and ICC 1431 (salt tolerant), were inter-crossed to study gene action involved in different agronomic traits under saline and control conditions. The generation mean analysis in six populations, viz. P1, P2, F1, F2, BC1P1 and BC1P2, revealed significant gene interactions for days to flowering, days to maturity, and stem Na and K concentrations in control and saline treatments, as well as for 100-seed weight under salinity. Seed yield, pods per plant, seeds per plant, and stem Cl concentration were controlled by additive effects under saline conditions. Broad-sense heritability values (>0.5) for most traits were generally higher in saline than in control conditions, whereas the narrow-sense heritability values for yield traits, and stem Na and K concentrations, were lower in saline than control conditions. The influence of the sensitive parent was higher on the expression of different traits; the additive and dominant genes acted in opposite directions which led to lower heritability estimates in early generations. These results indicate that selection for yield under salinity would be more effective in later filial generations after gene fixation.  相似文献   
878.
For in vivo production of doubled haploid (DH) lines in maize, the rate of haploid induction is of crucial importance. Maternal haploid induction depends primarily on the inducer used as a pollinator. However, the source germplasm used as a maternal parent and the environmental conditions for induction may also influence haploid induction and these aspects have not been examined in tropical maize so far. The objectives of our study were to (i) monitor the variation for haploid induction rate (HIR) among diverse source germplasm in tropical maize, (ii) determine the relative importance of general (GCA) and specific (SCA) combining abilities for HIR, and (iii) investigate the influence of summer and winter seasons and genotype × season interactions on this trait. Ten inbreds were mated in a half diallel design. The resulting 45 F1 single crosses were pollinated with the haploid inducer hybrid RWS × UH400 during the summer 2008 and winter 2009 seasons in a lowland tropical environment in Mexico. HIR of the single crosses averaged over seasons ranged from 2.90 to 9.66% with an overall mean of 6.74%. Mean HIR was significantly (P < 0.01) higher during the winter (7.37%) than summer season (6.11%). Significant (P < 0.01) variation was observed due to GCA effects of parental inbreds of single crosses but not for SCA, GCA × season and SCA × season interactions. Our study underpins that a higher HIR in tropical maize can be obtained by selecting appropriate source germplasm and undertaking pollination under favorable environmental conditions.  相似文献   
879.
Reciprocal differences, mostly caused by cytoplasmic effects, are frequently observed in interspecific hybrids. Previously, we found that crosses onto Solanum demissum were much successful with the pollen of interspecific hybrids between S. tuberosum as female and S. demissum as male (TD hybrids) than the reciprocal ones (DT hybrids). To elucidate this reciprocally different crossability, we analyzed the pollen DNA of TD and DT using methylation-sensitive amplified polymorphism (MSAP) analysis. Using 126 primer combinations, MSAP analysis revealed 57 different bands between bulked pollen DNA samples of TD and DT. Individual examination of 16 TD and 9 DT plants disclosed eight bands uniformly different between TD and DT. Their sequencing results revealed two pairs of bands to be identical to each other, resulting in six distinct sequences. As expected, one band shared high homology with chloroplast DNA, and another one with mitochondrial DNA. However, one band that was apparently different at DNA sequence level and maternally transmitted from S. demissum, showed no homology with any known sequence. The remaining three bands were of DNA methylation level differences with no or uncertain homology to known sequences. To our knowledge, this is the first report detecting reciprocal differences in DNA sequence or DNA methylation other than those in cytoplasmic DNA.  相似文献   
880.
Acorus calamus is an important medicinal plant which has been used in Indian traditional medicine since time immemorial. Various bioactive molecules, viz., acorin, α- and β-asarone, asaryldehyde, caryophylene, isoasarone, methylisoeugenol, and safrol have been isolated from this plant. However, the use of this plant for medicinal purpose has been recently banned due to the high toxic property of β-asarone. The triploid Acorus calamus is reported to be low in β-asarone content and thus found to be the ideal raw material for medicinal use. The present investigation represents our finding for successful in vitro clonal propagation of the elite triploid accessions of Acorus calamus for mass propagation. In the dual-phase culture system consisting of agar-solidified Murashige and Skoog medium overlaid by liquid fraction of the same medium, maximum multiple shoot induction was favored by supplementation of α-naphthaleneacetic acid (0.5 mg L−1) and 6-benzylaminopurine (2.0 mg L−1). In vitro rooting of the microshoots was maximum in the medium supplemented with indolebutyric acid at 2.0 mg L−1. The well-rooted microshoots could be successfully hardened and transplanted in the field. This result can be reproduced and is a viable protocol for successful clonal propagation of the seedless triploid Acorus calamus for conservation and sustainable development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号