首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   14篇
林业   2篇
基础科学   7篇
  2篇
综合类   9篇
农作物   1篇
水产渔业   2篇
畜牧兽医   57篇
植物保护   4篇
  2023年   1篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   11篇
  2012年   1篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1979年   1篇
  1972年   2篇
排序方式: 共有84条查询结果,搜索用时 125 毫秒
81.
Doppler velocity observations obtained by the Global Oscillation Network Group (GONG) instruments directly measure the nearly steady flows in the solar photosphere. The sun's differential rotation is accurately determined from single observations. The rotation profile with respect to latitude agrees well with previous measures, but it also shows a slight north-south asymmetry. Rotation profiles averaged over 27-day rotations of the sun reveal the torsional oscillation signal-weak, jetlike features, with amplitudes of 5 meters per second, that are associated with the sunspot latitude activity belts. A meridional circulation with a poleward flow of about 20 meters per second is also evident. Several characteristics of the surface flows suggest the presence of large convection cells.  相似文献   
82.
Inherited diseases of Australian Holstein-Friesian cattle   总被引:1,自引:1,他引:0  
  相似文献   
83.
The effects of sustained and regulated deficit irrigation (SDI and RDI) on “Mollar de Elche” pomegranate tree performance were investigated in a field trial conducted over three consecutive seasons. In the RDI regimes, severe water restrictions were applied during one of three phases: flowering and fruit set, fruit growth, or the final phase of fruit growth and ripening. In another approach, SDI was applied by watering trees at 50 % of the estimated crop water needs (ETc) during the entire season. Results showed that even after three consecutive seasons of water restrictions, similar yield levels were obtained in SDI and Control trees watered at 100 % ETc. This was because a 22 % reduction in average fresh fruit weight recorded in the SDI treatment was compensated by an increase in 28 % in the quantity of fruit collected per tree. This was most likely due to a reduction in the fall of the reproductive organs. However, the SDI strategy led to a reduction in 28 % in the yield value when fruits are sold for fresh fruit markets. Water restrictions applied only during flowering and fruit set also resulted in an increase in the quantity of fruit collected per tree, with only a slight reduction in fruit weight and without affecting the yield value. On the other hand, severe water restrictions applied during the summer (i.e., mid-phase of fruit growth) led to 24 % water savings with only a 7 % reduction in fruit weight. Fruit cracking was very low in all treatments and seasons (2–6 % over the total quantity fruit collected per tree). Only the RDI regime with restrictions during the summer increased cracking in one out of the three seasons. It is concluded that RDI can be used as a measure to cope with water scarcity and high water prices. Among all the RDI explored, the one with restrictions applied early in the season (during flowering and fruit set) was the most convenient strategy.  相似文献   
84.
Nitrogen fertilization is a substantial source of nitrogen-containing trace gases that have both regional and global consequences. In the intensive wheat systems of Mexico, typical fertilization practices lead to extremely high fluxes of nitrous oxide (N2O) and nitric oxide (NO). In experiments, lower rates of nitrogen fertilizer, applied later in the crop cycle, reduced the loss of nitrogen without affecting yield and grain quality. Economic analyses projected this alternative practice to save 12 to 17 percent of after-tax profits. A knowledge-intensive approach to fertilizer management can substitute for higher levels of inputs, saving farmers money and reducing environmental costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号