首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   5篇
林业   8篇
农学   9篇
基础科学   6篇
  18篇
综合类   10篇
农作物   4篇
水产渔业   3篇
畜牧兽医   6篇
园艺   9篇
植物保护   34篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1967年   1篇
  1963年   1篇
排序方式: 共有107条查询结果,搜索用时 0 毫秒
11.
Capillary barriers (CBs) occur at the interface of two soil layers having distinct differences in textural and hydraulic characteristics. The objective of this study was to introduce an artificial CB, created by a layer of gravel below the root zone substrate, in order to optimize conditions for the cultivation of horticultural crops. Potential root zone formats were analyzed with and without the gravel CBs for variables including the following: depth of CB; barrier separating the root zone from the surrounding soil; and root zone soil texture. Field and simulated results revealed that artificial CBs increased root zone water content and changed water flow dynamics. Volumetric soil water content was increased by 20–70%, depending on the soil texture and depth of the barrier. Sandy soil texture and shallower placement resulted in relatively higher water content. For sandy soil without plants, a shallow (0.2 m depth) CB increased water content of the overlaying soil by 50% compared to the control. The introduction of a gravel CB below the root zone of pepper plants (Capsicum Annum L.) lead to 34% higher matric head, 50% lower diurnal fluctuations in matric head and 40% increase in pepper fruit yield. Increasing water content by way of artificial CBs appeared to improve the water use efficiency of pepper plants. Such an improvement could lead to reduced water and fertilizer application rates and subsequent reduction in contamination below the root zone. This is especially relevant for substrates of low water-holding capacity typically used in horticulture crop production.  相似文献   
12.
Mechanical inoculations with contaminating tools and propagation of infected budwood were considered the main causes for the omnipresence of multiple viroid species among citrus and other Middle Eastern and Mediterranean fruit trees and grapevines. However, neither means could explain viroid infections of wild trees — scattered on terrains inaccessible to humans — nor the finding of similar viroids among graft-incompatible plants. Northern hybridization of RNA extracts made of scrapings from the surfaces of goat (Capra hircus) horns that were rubbed against etrog (Citrus medica) stems infected with a citrus viroids complex, revealed accumulation of considerable amounts ofCitrus exocortis viroids (CEVd) andHop stunt viroids (HSVd). Experimental transmission of both CEVd and HSVd was obtained by rubbing healthy citrus plants with goat horns that had been rubbed 24 h earlier on infected etrog stems. These results implicate goats as possible vectors of viroids. Transmissionvia goats could have facilitated the long-range spread of viroids among cultivated and wild plants andvice versa and also among graft-incompatible plants.  相似文献   
13.
Squash leaf curl virus (SLCV) and Watermelon chlorotic stunt virus (WmCSV) are cucurbit-infecting bipartite begomoviruses. Both viruses are found in the eastern Mediterranean basin but the effects of dual infection of both viruses on melon (Cucumis melo L.) have not been described. 'Arava' melon plants were inoculated in the greenhouse, using whiteflies, with either SLCV, WmCSV, or both. Control plants were exposed to nonviruliferous whiteflies or not exposed at all. Following inoculation, plants were transplanted to a 50-mesh insect-proof nethouse and grown until fruit maturity. The experiment was performed in two melon-growing seasons: spring, transplant in May and harvest in July; and summer, transplant in August and harvest in October. Following inoculation, SLCV-infected melon plants showed mild symptoms that disappeared with time, and there was no effect on plant height. WmCSV-infected plants developed disease symptoms that became more obvious with time, and plants were somewhat shorter than control plants in the spring but not in the summer. SLCV had no effect on yield, regardless of season. WmCSV had no statistically significant effect on yield in the spring but, in the summer, reduced yield by 22%, on average. Dual-inoculated plants showed a synergistic interaction between the two viruses. They developed disease symptoms that were more pronounced than WmCSV alone, with plants being shorter than control plants by 20 to 25% regardless of season. Moreover, the yield of dual-inoculated plants was reduced on average by 21% in the spring and 54% in the summer, and fruit appearance was adversely affected. Dual inoculation did not affect WmCSV DNA level but SLCV DNA level was increased several-fold by the presence of WmCSV.  相似文献   
14.
Kress M 《Science (New York, N.Y.)》2012,336(6083):865-869
Armed conflicts have been prevalent throughout history, in some cases having very great consequences. To win, one needs to understand the characteristics of an armed conflict and be prepared with resources and capabilities for responding to its specific challenges. An important tool for understanding these characteristics and challenges is a model--an abstraction of the field of conflict. Models have evolved through the years, addressing different conflict scenarios with varying techniques.  相似文献   
15.
Production of spring potato (Solanum tuberosum L. cv. Désirée) on a deep sandy soil in the central highland of the Negev desert of Israel under drip irrigation with saline water (up to 6.2 dS m−1) was studied in the years 1992–1997. The objective of the study was to determine the effects of saline water irrigation on potato production in an arid environment with special focus on the interactions with weather conditions. Although yields were often high, salinity effects were evident in some years. Thus 1992 and 1996 yields were 6–7 kg m−2 and showed no significant effect of salinity, while a pronounced drop in yield with increasing salinity was observed in 1993 and 1994. Analysis of weather data for 1993–1994 suggests that the decline in yield was due to interactions between saline irrigation and prolonged heat wave events occurring during crop development. Further experimental work (1997) revealed that tuber yield was most sensitive to combined salt and heat stress when heat waves occurred at 40–60 days after emergence. The combined stress apparently leads to the collapse of mechanisms for avoiding salt accumulation in young expanding leaves, resulting in failure of vegetative growth recovery and a consequent reduction in the leaf area index and canopy functioning. The relationship between tuber sink demand and available photoassimilate supply at certain stages of plant development is discussed with reference to the ability of the potato plant to recover from the combined stress.  相似文献   
16.
17.
18.
We investigated the effect of small-scale overstory gaps on the ecophysiology and growth of Quercus ithaburensis saplings. The study aim was to characterize how changes in daily exposure to direct beam radiation affect photosynthetic performance in the short term and growth and biomass partitioning in the long term. Using individual net-houses, the following treatments were applied: (a) Unshaded (daily irradiance = 100 %), (b) shading net with no gap (Shade-daily irradiance = 6 %), (c) shading net with 1 h gap allowing direct beam radiation (11:00 am–12:00 pm, Shade+1-irradiance = 20 %), (d) shading net with 3 h gap (11:00 am–2:00 pm, Shade+3-irradiance = 44 %). The experiment was performed in an irrigated field. We measured growth, biomass allocation, leaf traits, daily courses of leaf gas exchange and water potential. Oak dry-weight increased while height to dry-weight ratio and specific leaf area decreased with increasing daily exposure to direct beam radiation. Leaf chlorophyll content was less affected. Higher net carbon assimilation rates (A), stomatal conductance (gs) and A/gs were associated with higher instantaneous photosynthetic photon flux density (PPFD) throughout the entire experimental PPFD range. However, during gap-hours, while exposed to saturating radiation levels of similar level (ca. 1,800 µmol photon m?2 s?1), A in the Shade+1 oaks was about half that of the Shade+3 oaks and nearly one-third that of the Unshaded oaks. Patterns of gs, intercellular CO2 (Ci) and quantum efficiency of photosystem II pointed towards the possibility of a metabolic limitation. In conclusion, oaks benefited significantly from small scale overstory gaps though their capacity to utilize transient saturating radiation levels decreased with decreasing gap duration.  相似文献   
19.
News item     
  相似文献   
20.
Precision Agriculture - Irrigation uniformity in a semi-arid climate remains one of the main factors of water use efficiency (WUE) regardless of the level of agronomic advance, since over- and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号