首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
林业   31篇
综合类   1篇
农作物   1篇
畜牧兽医   29篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1988年   1篇
排序方式: 共有62条查询结果,搜索用时 0 毫秒
21.
Water use, hydraulic properties and xylem vulnerability to cavitation were studied in the coffee (Coffea arabica L.) cultivars San Ramon, Yellow Caturra and Typica growing in the field under similar environmental conditions. The cultivars differed in growth habit, crown morphology and total leaf surface area. Sap flow, stomatal conductance (g(s)), crown conductance (g(c)), apparent hydraulic conductance of the soil-leaf pathway (G(t)), leaf water potential (Psi(L)) and xylem vulnerability to loss of hydraulic conductivity were assessed under well-watered conditions and during a 21-day period when irrigation was withheld. Sap flow, g(c), and G(t) were greatest in Typica both with and without irrigation, lowest in San Ramon, which was relatively unresponsive to the withholding of irrigation, and intermediate in Yellow Caturra. The cultivars had similar g(s) when well watered, but withholding water decreased g(s) more in Typica and Yellow Caturra than in San Ramon. Typica had substantially lower Psi(L) near the end of the unirrigated period than the other cultivars (-2.5 versus -1.8 MPa), consistent with the relatively high sap flow in this cultivar. Xylem vulnerability curves indicated that Typica was less susceptible to loss of hydraulic conductivity than the other cultivars, consistent with the more negative Psi(L) values of Typica in the field during the period of low soil water availability. During soil drying, water use declined linearly with relative conductivity loss predicted from vulnerability curves. However, cultivar-specific relationships between water use and predicted conductivity loss were not observed because of pronounced hysteresis during recovery of water use following soil water recharge. All cultivars shared the same functional relationship between integrated daily sap flow and G(t), but they had different operating ranges. The three cultivars also shared common functional relationships between hydraulic architecture and water use despite consistent differences in water use under irrigated and dry soil conditions. We conclude that hydraulic architectural traits, rate of water use per plant and crown architecture are important determinants of short- and long-term variations in the water balance of Coffea arabica.  相似文献   
22.
We examined the influences of selected environmental variables on stomatal behavior and regulation of transpiration in 26-month-old Acacia koa Gray (koa) stands planted at spacings of 1 x 1 m or 2.5 x 2.5 m and grown without irrigation. Field measurements were made during recovery from an extended 60-day dry period with only 38 mm of precipitation. Biomass and leaf area were also measured at 3-month intervals over the first 24 months after planting and again following completion of the transpiration (T) and stomatal conductance (g(s)) measurements at about 26 months after planting. Transpiration was measured as sap flow through intact branches by a heat balance method. After a 22-day period during which 130 mm of rain were recorded, average T was substantially higher in the 2.5 x 2.5 m stand on both a leaf area and ground area basis even though leaf area index was about 3.5 times higher in the 1 x 1 m stand. After an additional 25 mm of rain during an 8-day period, T was still slightly higher on a leaf area basis in the 2.5 x 2.5 m stand but was about 3 times higher on a ground area basis in the 1 x 1 m stand. A strong stomatal response to humidity limited the increase in T with increasing evaporative demand. Values of g(s) in koa phyllodes were comparable to those reported for leaves of other mesic tropical forest trees, but were several times higher than those reported for Acacia species native to arid and semi-arid regions. The 1 x 1 m planting yielded three times more biomass per unit ground area than the 2.5 x 2.5 m planting. However, greater stand density, which resulted in more rapid depletion of soil water between rainfall inputs, was associated with lower growth efficiency and lower radiation conversion efficiency.  相似文献   
23.
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.  相似文献   
24.
25.
26.
The aim of this study was to evaluate the effects of concanavalin A (CONA) on the progesterone (P4) production by bovine steroidogenic luteal cells (LCs) in vitro. Luteal cells were collected during the mid‐luteal stage (at 10–12 days following ovulation) and processed in the laboratory. Luteal cells were grown for 7 days in a humid atmosphere with 5% CO2, with or without 10% foetal bovine serum, and were subjected to the following treatments: control: no treatment; CONA (10 μg/ml); LH (100 μg/ml); CONA + LH; LH (100 μg/ml) + prostaglandin F2α (PGF2α) (10 ng/ml); CONA + LH + PGF2α. Samples of the culture media were collected on days 1 (D1) and 7 (D7) for P4 quantification. The cells were counted on D7 of culture. Differences between treatments were considered statistically significant at < .05. Culture in the presence of CONA decreased the P4‐secreting capacity of LCs on D7 of culture, particularly in the absence of serum. The cell numbers did not change between treatments.  相似文献   
27.
SUMMARY: A study was undertaken in northern Thailand to examine the involvement of pigs in outbreaks of foot-and-mouth disease (FMD). Data were collected by surveying selected villages, by serological monitoring of pigs and by investigating outbreaks. Fifty-three of 58 villages (91%) surveyed reported that pigs did not develop FMD during the most recent outbreak. The source of 49/60 (82%) outbreaks was attributed to either recent purchases of infected cattle and buffalo or commingling of cattle and buffalo with stock from an infected neighbouring village. One of 60 villages (1.7%) reported that the source was introduced infected pigs. There was no association between the various hypothesised risk factors relating to the management of pigs and the frequency of FMD outbreaks in the survey. The percentage of seropositive pigs during 3 rounds of serological monitoring conducted at 6-monthly intervals in selected villages was 3.5%, 2.6% and 0%, respectively. No clinically affected pigs were observed in 11 outbreak investigations. It was concluded that pigs did not commonly become infected when there were outbreaks of FMD in village cattle and buffalo in northern Thailand. This was probably due to the pig feeding and housing practices employed by villagers that protected pigs from exposure to virus from infected cattle or buffalo, or their products.  相似文献   
28.
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental‐maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl’s reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal‐placental tissues in buffalo throughout pregnancy.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号