首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
林业   1篇
农学   3篇
基础科学   5篇
  8篇
综合类   2篇
农作物   1篇
畜牧兽医   14篇
园艺   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
11.
Summary Biotic and abiotic stresses cause significant yield losses in legumes and can significantly affect their productivity. Biotechnology tools such as marker-assisted breeding, tissue culture, in vitro mutagenesis and genetic transformation can contribute to solve or reduce some of these constraints. However, only limited success has been achieved so far. The emergence of “omic” technologies and the establishment of model legume plants such as Medicago truncatula and Lotus japonicus are promising strategies for understanding the molecular genetic basis of stress resistance, which is an important bottleneck for molecular breeding. Understanding the mechanisms that regulate the expression of stress-related genes is a fundamental issue in plant biology and will be necessary for the genetic improvement of legumes. In this review, we describe the current status of biotechnology approaches in relation to biotic and abiotic stresses in legumes and how these useful tools could be used to improve resistance to important constraints affecting legume crops.  相似文献   
12.
ABSTRACT

Treated wastewater was compared with tap water for irrigation of croton (Codiaeum variegatum Blume cv. ‘Petra’) in substrates consisting of 1 peat moss: 1 perlite (PP) or 1 soil: 1 sand (SS), alone or supplemented with zeolitic tuff at a ratio of 3:1 (PPZ and SSZ). Substrates were allowed to reach 80% of available water before the plants were irrigated with wastewater or tap water. Results indicated that neither water quality nor substrate affected plant width, leaf area, shoot fresh weight, or root length or weight. Wastewater increased stem diameter; node and leaf number; tissue nitrogen (N); sodium (Na); and chloride (Cl); substrate electrical conductivity (EC); phosphorus (P); Na, Cl, and leachate EC; and concentrations of Na, Cl, NO3 ?, and NH4 +. Root count, tissue Na, substrate potassium (K) and Na, and leachate pH were higher for zeolite-containing substrates. Shoot dry weight and tissue contents of N and P were the highest for wastewater-irrigated PP and PPZ. Wastewater-irrigated plants in PP and tap water-irrigated plants in PPZ exhibited the highest K content. The highest level of tissue Cl was recorded for SS. Tap water-irrigated PPZ had the highest pH and K concentration. Wastewater-irrigated PP, PPZ, and SS exhibited the highest contents of N, Na, and Cl, respectively. Based on the results, amendment of the substrate with zeolitic tuff is recommended to offset the adverse effect of salinity associated with wastewater.  相似文献   
13.
Three durum and three bread wheat genotypes were crossed to produce three tetraploid, three hexaploid and nine interspecific (pentaploid) F1 hybrids. All genotypes were evaluated for heat tolerance in the field and for drought using polyethylene glycol in vitro. Chromosome numbers and meiotic behavior in pentaploid F1 hybrids (2n=5x=35, genomes AABBD) were confirmed. Heat stress significantly reduced grain yield/plant and 1000-kernel weight (1000-KW), while grain protein content (GPC) was increased. Drought caused a significant reduction in root length, shoot length and seedling fresh weight, whereas root/shoot ratio was increased. P3 (durum), P4 (bread) and their pentaploid F1 hybrid could be considered as the most heat-tolerant genotypes. However, P2 (durum), P6 (bread) and their F1 were most tolerant to drought. The addition of a D genome single dose into pentaploid F1 hybrids obviously reduced grain yield/plant, 1000-KW and seedling traits, however GPC was increased. Moderate to high broad-sense heritability and genetic advance were obtained for the most investigated traits. Grain yield/plant was strongly positively correlated with stress tolerance index (STI), yield index (YI), mean productivity (MP), geometric mean productivity (GMP) and harmonic mean (HM) under heat stress and with root length under drought condition, suggesting that STI, YI, MP, GMP and HM are powerful indices for heat tolerance, while root length is most effective for drought. Successful interspecific hybridization obtained in the study is only an initial step for desired genes introgression. Successive progenies are going to be evaluated for further genetic studies aiming at improving abiotic stress tolerance in wheat.  相似文献   
14.

Context

Managing forests under climate change requires adaptation. The adaptive capacity of forest tree populations is huge but not limitless. Integrating evolutionary considerations into adaptive forestry practice will enhance the capacity of managed forests to respond to climate-driven changes.

Aims

Focusing on natural regeneration systems, we propose a general framework that can be used in various and complex local situations by forest managers, in combination with their own expertise, to integrate evolutionary considerations into decision making for the emergence of an evolution-oriented forestry.

Methods

We develop a simple process-based analytical grid, using few processes and parameters, to analyse the impact of forestry practice on the evolution and evolvability of tree populations.

Results

We review qualitative and, whenever possible, quantitative expectations on the intensity of evolutionary drivers in forest trees. Then, we review the effects of actual and potential forestry practice on the evolutionary processes. We illustrate the complexity of interactions in two study cases: the evolutionary consequences for forest trees of biotic interactions and of highly heterogeneous environment.

Conclusion

Evolution-oriented forestry may contribute adapting forests to climate change. It requires combining short-term and long-term objectives. We propose future lines of research and experimentation.  相似文献   
15.
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.  相似文献   
16.
Bluetongue (BT), a serious disease of sheep and some wild ruminants, is caused by bluetongue virus (BTV), a member of the family, Reoviridae. The current research thrust for controlling BT is on development of efficient vaccines, necessitating clear understanding of ovine immunology. At present, comparative studies on cytokine gene expression profiles of na?ve and BTV-sensitized peripheral blood mononuclear cells (PBMC) in sheep have not been clearly understood. In the present study, PBMC from na?ve and BEI-inactivated-saponin-adjuvanted BTV-1 vaccinated sheep were stimulated in vitro with heterologous BTV-23. At various intervals, RT-qPCR was carried out to estimate cytokine (interferon-gamma, interleukin-12 and interleukin-2) mRNA expressions that are linked to cell-mediated immunity. The results showed that PBMC cytokine profiles were relatively increased both temporally and quantitatively in immunized sheep PBMC compared to na?ve ones, suggesting that BTV-1 vaccination may prime immune system that can cross-react with BTV-23 antigens.  相似文献   
17.
Field experiments were conducted in 2008 and 2009 to determine the effects of deficit irrigation on yield and water use of field grown eggplants. A total of 8 irrigation treatments (four each year), which received different amounts of irrigation water, were evaluated. In 2008, deficit irrigation was applied at full vegetative growth (WS-V), pre-flowering (WS-F) and fruit ripening (WS-R), while in 2009 deficit irrigation was applied during the whole growing season at 80 (WS-80), 60 (WS-60) and 40% (WS-40) of field capacity. Deficit-irrigated treatments were in both years compared to a well irrigated control. Regular readings of soil water content (SWC) in 2008 and 2009 showed that average soil water deficit (SWD) in the control was around 30% of total available water (TAW) while in deficit-irrigated treatments it varied between 50 and 75% of TAW. In 2008, deficit irrigation reduced fruit fresh yield by 35, 25 and 33% in WS-V, WS-F and WS-R treatments, respectively, when compared to the control (33.0 t ha−1). However, the reduction in fresh yield in response to deficit irrigation was compensated by an increase in fruit mean weight. Results obtained in 2009 showed that fruit fresh yield in the control was 33.7 t ha−1, while it was 12, 39 and 60% less in WS-80, WS-60 and WS-40 treatments, respectively. On the other hand, fruit dry matter content and water productivity were found to increase significantly in both years in deficit-irrigated treatments. Applying deficit irrigation for 2 weeks prior to flowering (WS-F) resulted in water saving of the same magnitude of the WS-80 treatment, with the least yield reduction, making more water available to irrigate other crops, and thereby considered optimal strategies for drip-irrigated eggplants in the semi-arid climate of the central Bekaa Valley of Lebanon.  相似文献   
18.
Onchocerciasis (river blindness) is a serious health problem and a severe obstacle to social and economic development, especially in Africa. A complementary DNA fragment coding for an Onchocerca volvulus antigen (OV-16) was cloned and expressed in the plasmid vector pCG808fx. Immune responses to this O. volvulus-specific recombinant antigen were detectable in patients with documented onchocerciasis; the antibody response was also detectable at 3 months and at more than 1 year before infection could otherwise be detected in humans and in chimpanzees experimentally infected with O. volvulus third-stage larvae.  相似文献   
19.

Purpose

Recent sediment fingerprinting research has shown the sensitivity of source apportionment results to data treatments, tracer number, and mixing model type. In light of these developments, there is a need to revisit procedures associated with tracer selection in sediment fingerprinting studies. Here, we evaluate the accuracy and precision of different procedures to select tracers for un-mixing sediment sources.

Materials and methods

We present a new approach to tracer selection based on identifying and removing tracers that exhibit non-conservative behaviour during sediment transport. This removes tracers on the basis of non-conservative behaviour identified using (1) tracer-particle size relationships and (2) source mixing polygons. We test source apportionment results using six sets of tracers with three different synthetic mixtures comprising one, five, and ten mixture samples. Source tracer data was obtained from an agricultural catchment in northwest England where time-integrated suspended sediment samples were also collected over a 12-month period. Source un-mixing used MixSIAR, a Bayesian mixing model developed for ecological food web studies, which is increasingly being applied in catchment sediment fingerprinting research.

Results and discussion

We found that the most accurate source apportionment results were achieved by the selection procedure that only removed tracers on the basis of non-conservative behaviour. Furthermore, accuracy and precision were improved with five or ten mixture samples compared to the use of a single mixture sample. Combining this approach with a further step to exclude additional tracers based on source group non-normality reduced accuracy, which supports relaxation of the assumption of source normality in MixSIAR. Source apportionment based on the widely used Kruskal-Wallis H test and discriminant function analysis approach was less accurate and had larger uncertainty that the procedure focused on excluding non-conservative tracers.

Conclusions

Source apportionment results are sensitive to tracer selection. Our findings show that prioritising tracer exclusion due to non-conservative behaviour produces more accurate results than selection based on the minimum number of tracers that maximise source discrimination. Future sediment fingerprinting studies should aim to maximise the number of tracers used in source un-mixing constrained only by the need to ensure conservative behaviour. Our procedure provides a quantitative approach for identifying and excluding those non-conservative tracers.
  相似文献   
20.
More and more cultivated coastal territories of Syria are being affected by increasing land degradation processes, specifically, by soil erosion due to non‐sustainable soil management. The use of cover crops can be considered an ideal solution to reduce the negative impacts of extreme rainfall events on soil erosion. However, there is no enough information about the main cultivated areas of Syria due to the current conflicts and the very few types of research conducted there. Therefore, the main aim of this research was to assess soil erosion (soil loss and sediment concentration) and hydrological response (run‐off and infiltration) considering the impact of different types of cropping systems on soil organic matter. To achieve this goal, using erosion plots, five grouped natural rainfall events and soil samples were collected, and infiltration measurements were performed between November 2012 and April 2013 (rainy season) on three different cropping systems (wheat, vetch, bean and control) with different sloping gradients (8% and 20%) in Tartous governorate (W Syria). Our results showed a cumulative rainfall amount from 68.8 to 201 mm during the study period. The highest sediment yield was generated in the control and wheat plots, registering 0.468 and 0.368 kg m?2, respectively, with an inclination of 8%. For an inclination of 20%, the control and wheat plots registered 1.145 and 0.967 kg m?2, respectively. In comparison with the control plots, there was a decrease in the total eroded organic matter, which ranged from 0.0579 (control) to 0.0289 (bean) kg m?2 year?1 in the plots with 20% inclination, and from 0.0233 (control) to 0.0069 (bean) kg m?2 year?1 with 8% inclination. To sum up, bean and vetch play an effective role to mitigate soil erosion, delay run‐off and reduce sediment yield. The output of this research provides first insights into the impact of different land uses on soil loss. Also, it could help rural inhabitants and farmers to correctly manage their soils against soil erosion processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号