首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12235篇
  免费   832篇
  国内免费   111篇
林业   1154篇
农学   506篇
基础科学   103篇
  3140篇
综合类   525篇
农作物   702篇
水产渔业   1312篇
畜牧兽医   4429篇
园艺   223篇
植物保护   1084篇
  2024年   19篇
  2023年   94篇
  2022年   170篇
  2021年   313篇
  2020年   328篇
  2019年   316篇
  2018年   550篇
  2017年   566篇
  2016年   561篇
  2015年   433篇
  2014年   512篇
  2013年   779篇
  2012年   977篇
  2011年   900篇
  2010年   575篇
  2009年   478篇
  2008年   689篇
  2007年   674篇
  2006年   565篇
  2005年   547篇
  2004年   463篇
  2003年   428篇
  2002年   352篇
  2001年   243篇
  2000年   251篇
  1999年   207篇
  1998年   62篇
  1997年   64篇
  1996年   43篇
  1995年   42篇
  1994年   29篇
  1993年   24篇
  1992年   66篇
  1991年   47篇
  1990年   51篇
  1989年   58篇
  1988年   44篇
  1987年   44篇
  1986年   51篇
  1985年   55篇
  1984年   42篇
  1983年   37篇
  1982年   20篇
  1979年   34篇
  1978年   32篇
  1977年   31篇
  1974年   30篇
  1973年   45篇
  1972年   34篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
891.
ABSTRACT

The objective is to determine the growth, yield and chemical characteristics of pearl millet irrigated with different levels of brackish water and organic matter in two cultivation cycles. The experimental design was randomized blocks in a 4 × 4 factorial arrangement, composed of 4 levels of brackish irrigation (25, 50, 75 and 100% evapotranspiration), 4 levels of organic matter (0, 15, 30 and 45 t ha?1) with 3 repetitions. Along two cultivation cycles, pearl millet crop was analyzed for: plant growth variables, fresh and dry mass production, water-use efficiency, and chemical composition. There was significant interaction between applied water levels and organic matter for lignin in the 2nd cut (P < .05). The number of leaves, number of dead leaves and fresh mass production were influenced by the isolated effect of brackish water levels in cut 1 (P < .05). In turn, fresh mass production, dry mass production, plant height, leaves length, panicle length, fresh mass production, crude protein and ether extract were influenced by the isolated effect of saline water levels in the 2nd cut (P < .05). Growth, biomass production and chemical composition variables in second cut are positively influenced by different brackish irrigation levels under low rainfall conditions.  相似文献   
892.
Urea treated with urease inhibitors (UI) in association with humic substances (HS) is expected to improve urea efficiency by reducing ammonia losses and also provide the benefits of HS such as improve nitrogen (N) recovery by plants. Ammonia volatilization (AV), 15N recovery efficiency in the soil (NRE) and 15N use efficiency (NUE) were evaluated in maize (Zea mays L.) in a greenhouse pot trial. Treatments consisted of 15N-urea treated with UI (0, 0.4% boron (B) +0.15% copper (Cu), 0.64% B, and NBPT (N-(n-butyl) thiophosphoric triamide)) and three levels of HS (0%, 0.6%, and 1.2%). A control treatment (without N) was also included. N treatments were applied at V4 (vegetative leaf stage 4) on soil surface. HS was not efficient on AV reduction, NBPT had the greatest reduction in AV, and B had higher efficiency on AV reduction than Cu. At V8 (vegetative leaf stage 8), NBPT had the greatest NUE followed by B. At VT (tassel fully emerged), NUE from urea treated with NBPT reduced when increased levels of HS, and NBPT had the greatest NRE. UI in association with HS treated-urea does not reduce AV and it does not improve NUE by maize in vegetative stages.  相似文献   
893.
The effect of tillage on soil properties varies within field due to spatial variability of soils. Mapping changes of soil penetration resistance (PR) would be useful to understand and assess tillage practices to alleviate soil compaction. The objectives were to model the short-term effect of tillage on PR and its spatial structure, and to delineate homogeneous zones based on soil response in a Typic Argiudoll previously managed under no-till. A grid sampling for PR and soil water content (SWC) were performed before and after chiselling. Spatial analysis was performed on the effect of tillage on PR data by 10 cm layers and homogeneous zones were delineated by k-means cluster analysis. The effect of tillage was ?0.33 MPa in 10–20 and 20–30 cm layer. No differences of PR were found at 0–10 cm. Short range (5–7 m) spatial structure on the horizontal plane was observed in all layers. Only 45% of the field showed a marked effect of tillage on PR. Mapping the effect of tillage on PR would be a useful approach for evaluating the global and local response of soil to tillage, as well as for delineating of areas within field for site-specific tillage practices.  相似文献   
894.
A pot experiment was used to evaluate the effects of an arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on plant growth performance, root-hair growth, and root hormone levels in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) and drought stress (DS). A 9-week mild DS treatment significantly reduced mycorrhizal colonization of 2nd- and 3rd-order lateral roots. Root mycorrhizal colonization was relatively higher in the 2nd- and 3rd-order lateral roots than in the taproot and the 1st-order lateral root under WW and DS. AMF seedlings exhibited significantly higher root-hair density, length (except for the taproot) and diameter in taproot and 1st-, 2nd-, and 3rd-order lateral roots under WW, and considerably higher root-hair density (except for 1st-order lateral root), length (except for 2nd-order lateral root) and diameter under DS. Mycorrhizal inoculation remarkably increased root abscisic acid (ABA), indole-3-acetic acid (IAA), methyl jasmonate, and brassinosteroids (BRs) concentrations under DS, in company with the decrease in root zeatin riboside and gibberellins levels and root IAA effluxes. Root-hair traits were significantly positively correlated with root colonization and root ABA and BRs levels. It is concluded that mycorrhizal plants possessed better root-hair growth to adapt mild DS, which is associated with mycorrhizal colonization and endogenous hormone changes.  相似文献   
895.
This work examines the long-term effects of deficit-irrigation (DI) practices in almond crop (Prunus dulcis Mill.) in agronomical and physiological terms. The trial was conducted during four-year monitoring period (2014–2017), in an experimental orchard (SW Spain), subjected to three irrigation regimes; i) a full-irrigation treatment (FI), which received 100% of crop evapotranspiration (ETC); ii) a regulated-deficit irrigation (RDI50), which received 50% of ETC during the kernel-filling period; and iii) a low-frequency deficit irrigation (LFDI), that was subjected to continuous periods of irrigation-restriction defined in terms of threshold values of leaf-water potential (Ψleaf) during the kernel-filling period. During the water stress period, there were monitored Ψleaf, stomatal conductance (gs) and canopy temperature (TC). Significant improvements in terms of water-use efficiency were found, as no differences in terms of yield between FI and LFDI were found, leading to the conclusion that significant water savings (between 27 and 40%) can be achieved without compromising the yield. Moreover, threshold values of Ψleaf and thermal indicators were defined which will allow establishing future irrigation scheduling without compromising almond yield, especially when DI strategies are being applied.  相似文献   
896.
Purpose

Rain storm events mobilise large proportions of fine sediments in catchment systems. Sediments from agricultural catchments are often adsorbed by nutrients, heavy metals and other (in)organic pollutants that may impact downstream environments. To mitigate erosion, sediment transport and associated pollutant transport, it is crucial to know the origin of the sediment that is found in the drainage system, and therefore, it is important to understand catchment sediment dynamics throughout the continuity of runoff events.

Materials and methods

To assess the impact of the state of a catchment on the transport of fine suspended sediment to catchment outlets, an algorithm has been developed which classifies rain storm events into simple (clockwise, counter-clockwise) and compound (figure-of-eight; complex) events. This algorithm is the first tool that uses all available discharge and suspended sediment data and analyses these data automatically. A total of 797 runoff events from three experimental watersheds in Navarre (Spain) were analysed with the help of long-term, high-resolution discharge and sediment data that was collected between 2000 and 2014.

Results and discussion

Morphological complexity and in-stream vegetation structures acted as disconnecting landscape features which caused storage of sediment along the transport cascade. The occurrence of sediment storage along transport paths was therefore responsible for clockwise hysteresis due to the availability of in-stream sediment which could cause the “first flush” affect. Conversely, the catchment with steeper channel gradients and a lower stream density showed much more counter-clockwise hysteresis due to better downstream and lateral surface hydrological connectivity. In this research, hydrological connectivity is defined as the actual and potential transfer paths in a catchment. The classification of event SSC-Q hysteresis provided a seasonal benchmark value to which catchment managers can compare runoff events in order to understand the origin and locations of suspended sediment in the catchment.

Conclusions

A new algorithm uses all available discharge and suspended sediment data to assess catchment sediment dynamics. From these analyses, the catchment connectivity can be assessed which is useful to develop catchment land management.

  相似文献   
897.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   
898.
We have explored the possibility of predicting the malting quality of barley grain, indicated by malt extract yield, by characteristics measured either on plants at anthesis or in mature dry grain by image analysis. To produce barley samples with varying levels of all the characteristics studied, we used grain from an experiment designed to study the influence of lowinput husbandry practices on malting quality of barley by growing five malting genotypes at each of four environments (site × season) and with two different agronomic treatments (N fertilization and herbicide-mechanical roguing of weeds). The results showed that nitrogen content in the plant at anthesis was a good predictor of grain protein content, this characteristic in turn being positively correlated with embryo size and grain volume, as estimated by image analysis, and negatively correlated with nonstructural carbohydrate content in the plant at anthesis. Extract yield was positively correlated with Kolbach index (ratio of soluble to total wort protein) and negatively correlated with wort viscosity and barley grain protein content. Thus, the only practical predictor of malt extract was grain protein content.  相似文献   
899.
In this paper, the contamination degree of the Rybnik Reservoir with cadmium, copper and nickel was analyzed. Quality of the water from the reservoir was determined by drawing comparisons between the metal content in the water and both the officially permitted levels (contamination factor) and levels of metals occurring in the water of non-contaminated areas (enrichment factor). Contamination of bottom sediment with chosen metals was analyzed with reference to the metal content in mudstone (geoaccumulation index, enrichment factor, contamination factor). Trends towards changing the metal content in the bottom sediment was analyzed by determining the enrichment factor of the surface layer of the bottom sediments in relation to a deeper layer. Enrichment of the bottom sediments with metals coming from the water was also determined.  相似文献   
900.
Nitrogen uptake of kohlrabi, estimated by growth stages and an empirical growth model Some fertilizer recommendation systems for field vegetables are based on estimated nitrogen uptake curves. The estimation of nitrogen uptake should be as accurate as possible. Therefore 3 estimation methods and their accuracy (standard error of difference between measured and estimated values, sd) are compared. Comparisons were carried out with measured nitrogen uptake curves of kohlrabi (Brassica oleracea var. gongylodes L.) from 16 field experiments. The use of observed growth stages resulted in the smallest estimation error (sd = 14 kg N · ha?1). This method is recommendable because it is accurate and easy to use. Estimations by applying an empirical nitrogen uptake model (sd = 16 kg N · ha?1) are more complicated. The estimation based on time after planting is easy to use but showed the largest estimation error (sd = 28 kg N · ha?1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号