首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   7篇
林业   45篇
农学   8篇
基础科学   2篇
  117篇
综合类   31篇
农作物   9篇
水产渔业   13篇
畜牧兽医   76篇
园艺   11篇
植物保护   8篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   22篇
  2012年   15篇
  2011年   11篇
  2010年   13篇
  2009年   15篇
  2008年   27篇
  2007年   21篇
  2006年   18篇
  2005年   26篇
  2004年   17篇
  2003年   17篇
  2002年   19篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1965年   2篇
  1957年   1篇
排序方式: 共有320条查询结果,搜索用时 31 毫秒
181.
Understanding attributes of crop varieties and food raw materials underlying desirable characteristics is a significant challenge. Metabolomics technology based on flow infusion electrospray ionization mass spectrometry (FIE-MS) has been used to investigate the chemical composition of potato cultivars associated with quality traits in harvested tubers. Through the combination of metabolite fingerprinting with random forest data modeling, a subset of metabolome signals explanatory of compositional differences between individual genotypes were ranked for importance. Interpretative analysis of highlighted signals based on ranking behavior, intensity correlations, and mathematical relationships of ion masses correctly predicted metabolites associated with flavor and pigmentation traits in potato tubers. GC-MS profiling was used to further validate proposed compositional differences. The potential for the development of a database strategy for large scale, long-term projects requiring comparison of chemical composition in plant breeding, mutant population analysis in functional genomics experiments, or food raw material analysis is described.  相似文献   
182.
[6]-Gingerol is the major pungent principle of ginger and frequently is ingested with various condiments and nutritional supplements. We report here that incubation of [6]-gingerol with NADPH-fortified rat hepatic microsomes gave rise to eight metabolites, which were tentatively identified by GC-MS analysis as two products of aromatic hydroxylation as well as the diastereomers of two aliphatic hydroxylation products and the diastereomers of [6]-gingerdiol. Hepatic microsomes from rats and humans fortified with UDPGA glucuronidated [6]-gingerol predominantly at the phenolic hydroxyl group, but small amounts of a second monoglucuronide involving the aliphatic hydroxyl group were also identified by LC-MS/MS analysis. Human intestinal microsomes formed the phenolic glucuronide only. Supersomes containing human UGT1A1 and 1A3 exclusively generated the phenolic glucuronide, albeit with very low activities, whereas UGT1A9 catalyzed the specific formation of the alcoholic glucuronide and UGT2B7 the predominant formation of the phenolic glucuronide with high activities. Our study indicates a rather complex metabolism of [6]-gingerol, which should be taken into consideration for the multiple biological activities of this compound.  相似文献   
183.
A pot experiment was conducted to investigate factors contributing to phosphorous (P) efficiency of ornamental plants. Marigold (Tagetes patula) and poinsettia (Euphorbia pulcherima) were cultivated in a peat substrate (black peat 80% + mineral component 20% on a volume basis), treated with P rates of 0, 10, 35, 100, and 170 mg (L substrate)–1. During the cultivation period, plants were fertigated with a complete nutrient solution (including 18 mg P L–1) every 2 d. Both poinsettia and marigold attained their optimum yield at the rate of 35 mg P (L substrate)–1 and the critical level of P in shoot dry matter of both crops was 5–6 mg g–1. After planting, plant‐available P increased at lower P rates to a higher level for poinsettia than for marigold, but no significant change was observed at higher P rates. Balance sheet calculations indicated that at lower P rates more P was fertigated than was taken up by the plants. Root‐length density, root‐to‐shoot ratio, and root‐hair length of marigold were doubled compared to that of poinsettia. Root‐length density increased with crop growth, and 10 d after planting the mean half distance between roots exceeded the P‐depletion zone around roots by a factor of 3 and 1.5 for poinsettia and marigold, respectively. Thus, at this early stage poinsettia exploited only 10% of the substrate volume whereas marigold utilized 43%. Later in the cultivation period, the depletion zones around roots overlapped for both crops. Taking into account P uptake via root hairs, the simulation revealed that this was more important for marigold compared to poinsettia especially at low P‐supply levels. However, increase of P uptake due to root hairs was only 10%–20% at optimum P supply. For the two lower P levels, the P‐depletion profile around roots calculated for 10 d after planting showed that after 2 d of depletion the concentration at the root surface was below the assumed Km value (5 μM) and the concentration gradient was insufficient to fit the demand. A higher content of plant‐available P in the substrate was observed for poinsettia compared to marigold in the treatment with P application adequate for optimum growth, because more fertigated P was accumulated during early stages of cultivation due to lower root‐length density of poinsettia. The observed difference of root morphological parameters did not contribute significantly to P‐uptake efficiency, since P mobility in the peat substrate was high.  相似文献   
184.
185.
186.
187.
188.
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号