首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17882篇
  免费   118篇
  国内免费   3篇
林业   3699篇
农学   1319篇
基础科学   140篇
  3037篇
综合类   953篇
农作物   2151篇
水产渔业   1937篇
畜牧兽医   1655篇
园艺   1157篇
植物保护   1955篇
  2023年   14篇
  2022年   18篇
  2021年   37篇
  2020年   40篇
  2019年   59篇
  2018年   2775篇
  2017年   2734篇
  2016年   1226篇
  2015年   101篇
  2014年   52篇
  2013年   78篇
  2012年   875篇
  2011年   2217篇
  2010年   2146篇
  2009年   1314篇
  2008年   1404篇
  2007年   1660篇
  2006年   134篇
  2005年   175篇
  2004年   189篇
  2003年   235篇
  2002年   127篇
  2001年   32篇
  2000年   68篇
  1999年   23篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   19篇
  1994年   5篇
  1993年   20篇
  1992年   23篇
  1991年   7篇
  1990年   7篇
  1989年   15篇
  1988年   18篇
  1987年   11篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   8篇
  1979年   6篇
  1977年   4篇
  1972年   6篇
  1971年   3篇
  1968年   10篇
  1967年   4篇
  1964年   4篇
  1963年   3篇
  1962年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
The Flowering Locus T (FT)-like genes of angiosperms are highly conserved. The FT-encoded proteins include a phosphatidylethanolamine-binding domain that is involved in the control of the shoot apical meristem identity and flowering time. In the present study, FT genes were investigated in 20 bamboo species that are grouped into sympodial, mixed and scattered bamboos based on their morphology. All examined orthologous FT genes consisted of four exons and three introns. Their encoded protein sequences contained the critical amino acid residues Tyr85, Glu109, Leu128, Tyr134, Trp138, Arg139, Gln140 and Asn152, of which each possesses a biological function. The DNA sequences were rich in single nucleotide polymorphism (SNP) sites. The SNP frequency was 1 SNP/16.8 bp, and the nucleotide diversity (π) equaled 0.265. Some SNPs altered restriction enzyme sites or resulted in changes in amino acid contents. The correlation analysis showed that several SNPs were informative in relation to the underground rhizome types of bamboos. Therefore, FT polymorphisms could be used as a tool to identify the underground rhizome types of bamboos. The phylogenetic tree constructed based on the FT gene sequences showed that the obtained clustering was consistent with the underground rhizome types. The SNP markers developed in the present study will provide information on the genetic diversity of bamboos and they can aid taxonomic study as well.  相似文献   
143.
Tobacco mosaic virus (TMV) caused serious loss in yield and quality of tobacco every year. It is a long-term goal to improve the tobacco resistance against TMV by tobacco breeding. N gene was the firstly reported TMV-resistant gene, which showed resistance against all Tobamoviruses except the Ob stain and belonged to the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat class of plant resistance (R) genes. At present, N gene had already been widely used in tobacco conventional breeding, but there is rare available molecular maker used in marker-assisted selection of TMV resistance. In this study, we designed a pair of primers that specific amplify N gene fragment based on the sequence of N gene intron III, named N-marker. Then, we identified TMV resistance by two selecting methods, PCR with N-marker and inoculated with the TMV-C strain. Results from the two method showed that (1) 13 varieties among 67 tobacco varieties displayed hypersensitive reaction when inoculated with the TMV-C strain, also contained N gene fragments screened by PCR with N-marker; (2) 105 strains of 200 BC1 strains showed resistance against TMV when inoculated with TMV-C strain, meanwhile, 103 of the 105 strains contained N gene fragment verified by PCR with N-marker. Therefore, the N-marker is reliable for high throughput screening of germplasm resources and tobacco breeding materials in selection of N-mediated TMV resistance. Our study not only developed a molecular marker for tobacco breeding, but also identified new germplasm resources that are resistant to TMV.  相似文献   
144.
Regulation of flowering time in almond, as in other Prunus species, is a complex process involving both chill and heat requirements. Following exposure to appropriate consecutive periods of cold and warm temperatures, the buds break dormancy and sprout or flower depending on bud type. To maximize flowering and subsequent vegetative growth and fruit set, chilling and ensuing warm temperature requirements have to be fully satisfied. Because of its potential for very early flowering, flowering time in almond is a major determinant of its adaptation to new environments. In colder regions, Late-flowering is often necessary to avoid frost damage during and just after flowering. Consequently, the selection of delayed flowering times remains an important objective in almond improvement programs. Flowering time is considered a quantitative though highly heritable trait. In addition, a dominant gene (Late flowering, Lb), originally identified in a spontaneous mutation of the Californian almond cultivar ‘Nonpareil’, was also described. The objective of this review is a comparative analysis of the effects of regional adaptation, breeding and mutation on the delay of flowering time in new almond cultivars. Findings indicate that the adaptation of almonds from the Mediterranean basin to colder regions in Northern Europe and America has been mainly achieved through delayed flowering. These adapted late-flowering cultivars have usually been developed by selecting desired quantitative genes within each regional germplasm. Additional progress thus appears achievable with a more comprehensive understanding of the quantitative and qualitative genetics controlling this trait. The use of molecular markers for the early selection of genes conferring late flowering, including both spontaneous mutations as well as unique regional germplasm, should allow development of even later cultivars including ultra-late cultivars flowering as into April.  相似文献   
145.
Soybean yield components and agronomic traits are connected through physiological pathways that impose tradeoffs through genetic and environmental constraints. Our primary aim is to assess the interdependence of soybean traits by using unsupervised machine learning techniques to divide phenotypic associations into environmental and genetic associations. This study was performed on large scale, jointly analyzing 14 quantitative traits in a large multi-parental population designed for genetic studies. We collected phenotypes from 2012 to 2015 from a soybean nested association panel with 40 families of approximately 140 individuals each. Pearson and Spearman correlations measured phenotypic associations. A multivariate mixed linear model provided genotypic and environmental correlations. To evaluate relationships among traits, the study used principal component and undirected graphical models from phenotypic, genotypic, and environmental correlation matrices. Results indicate that high phenotypic correlation occurs when traits display both genetic and environmental correlations. In genetic terms, length of reproductive period, node number, and canopy coverage play important roles in determining yield potential. Optimal grain yield production occurs when the growing environment favors faster canopy closure and extended reproductive length. Environmental associations found among yield components give insight into the nature of yield component compensation. The use of unsupervised learning methods provides a good framework for investigating interactions among various quantitative traits and defining target traits for breeding.  相似文献   
146.
Randomized complete block (RCB) design is the most widely used experimental design in biological sciences. As number of treatments increases, the block size become larger and it looses the capacity to control the variance within block, which is its original purpose. A method known as post hoc blocking could be used in these cases to improve the genetic parameter estimation and thus obtain an unbiased assessment of the performance of a given treatment. In trufgrass breeding, as other breeding program, this is a common challenge. The goal of this study was to test the capacity of different post hoc blocking designs to improve the genetic parameter estimation of zoysiagrass (Zoysia spp.). We evaluated two post hoc blocking designs; row–column (R–C) and incomplete block (IB) designs on five genotype trials located in Florida. The results showed that post hoc R–C design had superior model fitting than both the original RCB and the post hoc IB designs when studied at the single measurement level and at the site level. The narrow-sense heritability (0.24–0.40) and the genotype-by-measurement correlation (0.57–0.99) did not change significantly when R–C was compared to the original RCB design. The ranking of the top performing genotypes changed considerably when comparing RCB to R–C design, but the degree depended on the location analyzed. We conclude that the change in the ranking of the top (potentially select individuals) is coming from the better control of intra-block environmental variation, and this could potentially have a significant impact on the breeding selection process.  相似文献   
147.
148.
Fusarium verticillioides and Aspergillus flavus cause Fusarium ear rot (FER) and Aspergillus ear rot (AER) of maize, respectively. Both pathogens are of concern to producers as they reduce grain yield and affect quality. F. verticillioides and A. flavus also contaminate maize grain with the mycotoxins fumonisins and aflatoxins, respectively, which has been associated with mycotoxicosis in humans and animals. The occurrence of common resistance mechanisms to FER and AER has been reported. Hence, ten Kenyan inbred lines resistant to AER and aflatoxin accumulation were evaluated for resistance to FER, F. verticillioides colonisation and fumonisin accumulation; and compared to nine South African lines resistant to FER and fumonisin accumulation. Field trials were conducted at three localities in South Africa and two localities in Kenya. FER severity was determined by visual assessment, while F. verticillioides colonisation and fumonisin content were quantified by real-time PCR and liquid chromatography tandem mass spectrometry, respectively. Significant genotype x environment interactions was determined at each location (P ≤ 0.05). Kenyan inbred CML495 was most resistant to FER and F. verticillioides colonisation, and accumulated the lowest concentration of fumonisins across localities. It was, however, not significantly more resistant than Kenyan lines CML264 and CKL05015, and the South African line RO549 W, which also exhibited low FER severity (≤5%), fungal target DNA (≤0.025 ng μL?1) and fumonisin levels (≤2.5 mg kg?1). Inbred lines resistant to AER and aflatoxin accumulation appear to be promising sources of resistance to F. verticillioides and fumonisin contamination.  相似文献   
149.
Soil and root samples were collected from major tomato growing areas of Ethiopia during the 2012/2013 growing season to identify root-knot nematode problems. DNA-based and isozyme techniques revealed that Meloidogyne incognita and M. javanica were the predominant Meloidogyne species across the sampled areas. The aggressiveness of different populations of these species was assessed on tomato cultivars Marmande and Moneymaker. The two most aggressive populations of each species were selected and further tested on 33 tomato genotypes. The resistance screening and mechanism of resistance was performed after inoculation with 100 freshly hatched (<24 h) second-stage juveniles (J2). Eight weeks after inoculation the number of egg masses produced on each cultivar was assessed. For the resistance mechanism study, J2 penetration and their subsequent development inside the tomato roots were examined at 1, 2, 4 and 6 weeks after inoculation. On both cultivars Marmande and Moneymaker all M. incognita and M. javanica populations formed a high number of egg masses indicating highly aggressive behaviour. Populations from ‘Jittu’ and ‘Babile’ for M. incognita and ‘Jittu’ and ‘Koka’ for M. javanica were selected as most aggressive. None of the 33 tomato genotypes were immune for these M. incognita and M. javanica populations. However, several tomato genotypes were found to have a significant effect on the number of egg masses produced indicating possible resistance. For M. javanica populations there were more plants from cultivars or breeding lines on which no egg masses were found compared to M. incognita populations. The lowest number of egg masses for both populations of M. incognita was produced on cultivars Bridget40, Galilea, and Irma while for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-2366B and CLN-2366C. Tomato genotypes, time (weeks after inoculation) and their interaction were significant sources of variation for J2 penetration and their subsequent development inside the tomato roots. Differential penetration was found in breeding lines such as CLN-2366A, CLN-2366B and CLN-2366C, but many of the selected tomato genotypes resistance for the tested M. incognita and M. javanica populations were expressed by delayed nematode development. Therefore, developing a simple screening technique to be used by local farmers or extension workers is crucial to facilitate selection of a suitable cultivar.  相似文献   
150.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号