首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1442篇
  免费   69篇
林业   158篇
农学   70篇
基础科学   12篇
  357篇
综合类   46篇
农作物   300篇
水产渔业   223篇
畜牧兽医   244篇
园艺   19篇
植物保护   82篇
  2023年   14篇
  2022年   53篇
  2021年   66篇
  2020年   69篇
  2019年   77篇
  2018年   101篇
  2017年   112篇
  2016年   102篇
  2015年   49篇
  2014年   85篇
  2013年   168篇
  2012年   101篇
  2011年   103篇
  2010年   85篇
  2009年   63篇
  2008年   89篇
  2007年   54篇
  2006年   30篇
  2005年   15篇
  2004年   12篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   11篇
  1998年   1篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1972年   1篇
  1939年   1篇
排序方式: 共有1511条查询结果,搜索用时 4 毫秒
131.
It has been hypothesized that the uptake of organic as opposed to inorganic nitrogen compounds found in wastewater can be properly substituted for plant nutrients. The objective of this study was to compare effects of applying monosodium glutamate wastewater (MGW) and ammonium nitrate (NH4NO3) (AN) on nitrogen metabolism and growth of lettuce. The results showed that while NH4NO3 (AN), NO3-, nitrite content and NR activity increased the protein content of lettuce. Applying MGW with a high concentration of 17 amino acids and macro- and microelements improved the fresh weights of shoot and root as well as the protein content of lettuce. Antioxidant activities were not affected by AN and MGW, and their interaction effects only increased POD after 8 weeks. In conclusion, substituting a portion of the chemical fertilizers with MGW improved lettuce growth, but did not increase NO3- accumulation in leaves.  相似文献   
132.
133.
Genetic Resources and Crop Evolution - Salinity is one of the well-known abiotic stresses resulting in loss of wheat yield. The identification of differentially induced genes and then becoming...  相似文献   
134.
135.
ABSTRACT

Calcareous soils typically suffer from zinc deficiency and zinc sulfate is incorporated in many cultivated soils. Utilization of ZnSO4 has some kinds of interaction with soil particles and organic matter. In this study, the efficacy of two znic(Zn)-amino acid chelates (Zn-ACs) i.e., Zn-alanine (Zn-Ala) and Zn-glycine (Zn-Gly) on wheat (Triticum aestivum, cv. N91-8) growth characteristics and zinc concentration in wheat was examined under greenhouse conditions and compared to the a commercial ZnSO4. Results showed that Zn-Ala and Zn-Gly significantly increased the dry weight and shoot length of wheat in comparison to ZnSO4 treatment. Soil application of Zn-Amino acid chelates proved to be the most influential source of zinc in increasing wheat growth and yield indices. Number of fertile spikelet and grain yield increased significantly respectively compared to ZnSO4 treatment. Zn concentration and protein content of wheat grain in Zn-ACs treatment was significantly higher than the ZnSO4 treatment. Soil application of Zn-ACs caused a significant decrease in the grain phytic acid (PA) concentration and also phytic acid to zinc molar ratio in comparison with ZnSO4 treatment. According to the results, Zn-ACs could be utilized as a zinc fertilizer source for improving the zinc bioavailability in wheat.  相似文献   
136.
ABSTRACT

Evaluation of the relationships between nutritional patterns and farms’ age with the behavior of saffron (Crocus sativus L.) daughter corms based on farmers’ management (on-farm) can be crucial in improving saffron sustainable yield. Furthermore, in commercial saffron production, especially in small farms, the purchased water and fertilizers are the basis of sustainable saffron profitability, hence, recognizing the relationships between economic water use efficiency (EWUE) and economic fertilizer use efficiency (EFUE) can be important. An on-farm experiment was conducted on a large scale based on farmers’ management in Torbat Heydarieh, Iran. The farms’ age (1–6 years old) and fertilizers management approaches (organic, mineral and integrated) were considered as the first and second factors, respectively. Large-sized daughter corms number and weight and corms N and P content increased with increasing farms’ age from 1 to 4 years old. However, these parameters decreased with increasing farms’ age from 4 to 6 years old. Irrespective of saffron farms’ age, the minimum large-sized daughter corms number and weight were observed when mineral fertilizer management was practiced. By contrast, the maximum values were related to integrated fertilizer management. In each type of fertilizer management, EWUE and EFUE (based on large-sized daughter corms monetary value) increased with increasing farms age from 1 to 4 years. However, increase in farms age from 4 to 6 years caused a significant reduction in mentioned indices. Overall, if high-quality saffron corm production is needed, corms should be harvested in the fourth year to gain the maximum yield and profit.  相似文献   
137.
Manure urea pellets were produced and their nitrogen release rate was evaluated in soil incubation at different water contents of 90, 75, and 60% soil filed capacity (FC). In another experiment, sweet basil growth was evaluated during eight months (with three shoot harvests) under the pellet application. The nitrogen release and pellet dispersion rates were slow after two months or at lower soil water content (60% FC), but they were significant after four months of soil incubation, or at higher soil water content (75 or particularly 90% FC). Application of pelleted urea reduced plant growth and yield at first harvest than urea treatment. However, at second and particularly at third harvest (and the average of three harvests) significant improvement in growth parameters of SPAD value, leaf area, plant height, shoot fresh weight, pot yield, and` leaf N and K concentrations were achieved by application of pelleted urea fertilization.  相似文献   
138.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   
139.
Land-use change from forest to agriculture in the volcanic ash-derived soils of Mexico has increased over recent decades. It is likely that land uses and management practices, particularly fertilizer use have affected phosphorus (P) distribution and availability. The objective of this study was to evaluate the effects of land-use types (native forest and maize mono-cropping), and the related P addition, on the forms and distribution of soil P and their isotopic exchangeability. An Andisol, sampled from a cropping site, along with the contiguous area under native forest was treated with 32P-labelled potassium phosphate (KH232PO4). The soil samples were extracted after incubation times of 7, 21, 35 and 49 days. Phosphorus content and 32P recovery in fractions sequentially extracted were assessed for each incubation time. Total soil P was dominated by inorganic fractions (79 to 86%) in both land-use types. Resin-Pi, bicarbonate extractable inorganic P (Bic-Pi) and sodium hydroxide extractable inorganic P (NaOH0.1-Pi) were all raised with P addition. However, the proportion of organic P fraction was reduced under cropped soil. The recovery of 32P in soils with P addition indicates that resin-Pi, Bic-Pi and NaOH0.1-Pi comprised nearly all the exchangeable P. In native soils with no P addition, more than 19% of the 32P was recovered in Bic-Po and NaOH0.1-Po forms. This finding indicates that organic P cycling is crucial when soil Pi reserves are presented in an inadequate amount. Ecologically based management has to be designed for replenishment and succeeding maintenance of soil organic P compounds to increase sustainable agricultural production.  相似文献   
140.
Obtaining high crop yields with limited water consumption requires optimal irrigation strategies based on comprehensive studies of the parameters of plant–environment interactions. Here, we used a structural equation modelling (SEM) to assess the relationships among input irrigation factors and moderate factors to find an optimum water use efficiency (WUE) response factor, for outdoor and greenhouse cultivation of eggplant (Solanum melongena). The input irrigation factors (including irrigation interval, water salinity and environment) and the moderate factors (evapotranspiration, soil salinity, plant parameters, fruit parameters and crop yield) were used in water cycle algorithm (WCA) and genetic algorithm (GA) methods to optimize the water use efficiency. The optimization process included finding the best combination of irrigation factors and optimized eggplant cultivation. The structural equation modelling results indicate that irrigation interval negatively affected water use efficiency with a more dominant effect on plant parameters. Water salinity negatively affected the water use efficiency with a more dominant effect on soil salinity, crop yield and fruit parameters. Low salinity water was more effective than full irrigation to optimize the water use efficiency. The water cycle algorithm revealed that for outdoor cultivation, the optimal range of irrigation interval was 2–5 days and water salinity in the range of 0.8–2.2 ds/m. These factors optimized evapotranspiration (346.23–738.19 mm), soil salinity (4.16–9.45 ds/m), fruit parameters (33.81–35.12 cm) and crop yield (1715.7–2190.8 g/plant), as well as increasing the water use efficiency (3.08–4.89 g/(plant-mm)). Both the water cycle algorithm and genetic algorithm yielded very close to optimal values. Two years of repeated experiments and the closeness of the optimal values using the algorithms confirmed that the optimal amounts are reliable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号