全文获取类型
收费全文 | 818篇 |
免费 | 49篇 |
国内免费 | 1篇 |
专业分类
林业 | 92篇 |
农学 | 38篇 |
基础科学 | 11篇 |
199篇 | |
综合类 | 69篇 |
农作物 | 56篇 |
水产渔业 | 80篇 |
畜牧兽医 | 265篇 |
园艺 | 14篇 |
植物保护 | 44篇 |
出版年
2023年 | 11篇 |
2022年 | 10篇 |
2021年 | 24篇 |
2020年 | 30篇 |
2019年 | 36篇 |
2018年 | 35篇 |
2017年 | 30篇 |
2016年 | 30篇 |
2015年 | 21篇 |
2014年 | 42篇 |
2013年 | 47篇 |
2012年 | 53篇 |
2011年 | 79篇 |
2010年 | 44篇 |
2009年 | 36篇 |
2008年 | 48篇 |
2007年 | 42篇 |
2006年 | 39篇 |
2005年 | 31篇 |
2004年 | 40篇 |
2003年 | 35篇 |
2002年 | 38篇 |
2001年 | 9篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 7篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1987年 | 3篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有868条查询结果,搜索用时 1 毫秒
71.
Tadokoro S Shattil SJ Eto K Tai V Liddington RC de Pereda JM Ginsberg MH Calderwood DA 《Science (New York, N.Y.)》2003,302(5642):103-106
Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation. 相似文献
72.
73.
Singleton Megan P. Thode Andrea E. Sánchez Meador Andrew J. Iniguez Jose M. Stevens Jens T. 《Landscape Ecology》2021,36(12):3429-3449
Landscape Ecology - Spatial patterns of high-severity wildfire in forests affect vegetation recovery pathways, watershed dynamics, and wildlife habitat across landscapes. Yet, less is known about... 相似文献
74.
75.
Across the physiognomic types of the Orinoco llanos, periodic inventories and changes in land-use between 1982–1992 are estimated. Results indicate that the area under pastures and forest plantations is increased by 0.005337×106 km2, whilts reducing the area of croplands by 0.000119×106 km2. This is a net increase of 0.005218×106 km2. The gross carbon release is 174.66 Tg C per year to the atmosphere and transferring from cultivated and native vegetation to wood products (1.62 Tg C per year) and slash (1.18 Tg C per year). The processes of land preparation contribute 1.40 Tg C per year to the atmosphere. From the tree savannas, woodlands and forests 0.73 Tg C per year are estimated to have been transferred to the soil following clearance and burning over this period, and 1.05 Tg C per year from herbaceous savannas when were buried and decomposed at 0.84 Tg C per year. The estimate of carbon balance here by inventories and changes in land-use approach indicates that the Orinoco llanos is a sink of −17.53 Tg C per year. The carbon turnover time in the Orinoco system is 68 years, which provides a limited route for carbon sequestration. The calculated potential of the Orinoco llanos for storing carbon is 8300 Tg C. Ecological options to achieve this potential value are addressed. However, nutrient deficiency and seasonal water supply are serious drawbacks to take into account for increasing carbon accretion. These results are particular for the Orinoco llanos, even though described processes could be similar to world-wide savannas, where a gradient of carbon heterogeneity exists. 相似文献
76.
Almudena Majano-Majano Mark Hughes Jose L. Fernandez-Cabo 《Wood Science and Technology》2012,46(1-3):5-21
The fracture toughness of thermally modified beech (Fagus sylvatica L) and ash (Fraxinus excelsior L) wood under Mode I loading was quantified using Compact Tension (CT) specimens, loaded under steady-state crack propagation conditions. The influence of three heat-treatment levels and three moisture contents, as well as two crack propagation systems (RL and TL) was studied. Complete load–displacement records were analysed, and the initial slope, k init, critical stress intensity factor, K Ic, and specific fracture energy, G f, evaluated. In the case of both species, thermal modification was found to be significantly affect the material behaviour; the more severe the thermal treatment, the lower the values of K Ic and G f, with less difference being observed between the most severe treatments. Moisture content was also found to influence fracture toughness, but had a much less significant effect than the heat treatment. 相似文献
77.
In a 14-week study, 1-year-old Aleppo pine seedlings were grownin two growth chambers. Seedlings were artificially hardenedby decreasing photoperiod and temperature. In each chamber halfof the seedlings were fertilized with nitrogen (8.4 mg seedling1).In order to determine the relative importance of the hardeningenvironment versus fertilization, each chamber was programmedto decrease night temperatures down to a low of 8 or 4°C.Chlorophyll fluorescence and frost hardiness was measured fivetimes during the experiment. A sample of seedlings from eachtreatment was exposed to an artificial frost at 5°Cand the freezing effects were assessed by measurements of chlorophyllfluorescence and visual evaluation of needle damage. Seedlingsincreased their frost hardiness during the experiment in allthe treatments but the ratio of variable to maximal chlorophyllfluorescence (Fv/Fm) measured before freezing did not vary duringthe experiment. This indicates that Aleppo pine maintains itsphotosynthetic ability during hardening in contrast to otherconiferous species from colder climates. The effect of nitrogenfertilization on frost hardiness was small in comparison withchamber effect. Nitrogen fertilization slightly delayed theacquisition of hardening in the coldest chamber. Seedlings inthe warmest chamber did not become fully resistant to 5°C,but in the coldest chamber, where night temperature reached4°C, all the seedlings were resistant to the frost. Severedamage caused by frost could be related to a rapid rise of minimalfluorescence (F0) but the best index of damage was the dropof Fv/Fm after freezing. 相似文献
78.
Jose V. Moris Giorgio Vacchiano Simone Ravetto Enri Michele Lonati Renzo Motta Davide Ascoli 《New Forests》2017,48(5):663-683
European larch is a dominant species in the subalpine belt of the western Alps. Despite recent increases in wildfire activity in this region, fire ecology of European larch is poorly understood compared to other larch species around the world. This study aims to assess whether European larch forests are resilient to fires, and to find out the factors that drive such resilience. We assessed the recovery of larch forests along a gradient of fire severity (low, moderate, high) based on the abundance and dominance of post-fire larch regeneration. We established 200 plots distributed among burned larch forests in nine wildfires that occurred between 1973 and 2007 in the western Alps. We included variables regarding topography, climate, fire severity, fire legacies, ground cover, grazing intensity, and time since fire. To evaluate potential drivers of larch recruitment, we applied generalized linear mixed models (GLMM) and random forests (RF). Larch regeneration was much more abundant and dominant in the moderate- and high-severity fire classes than in the low-severity class. More than half of the plots in the moderate- and high-severity classes were classified as resilient, i.e., post-fire larch regeneration was enough to recover a larch stand. GLMM and RF produced complementary results: fire severity and legacies, such as snags, canopy cover and distance to seed source, were crucial factors explaining post-fire larch recruitment. This study shows that fire has a positive effect on larch regeneration, and we conclude that European larch forests are highly resilient to mixed-severity fires in the western Alps. 相似文献
79.
Ever since the Kyoto Protocol, agroforestry has gained increased attention as a strategy to sequester carbon (C) and mitigate global climate change. Agroforestry has been recognized as having the greatest potential for C sequestration of all the land uses analyzed in the Land-Use, Land-Use Change and Forestry report of the IPCC; however, our understanding of C sequestration in specific agroforestry practices from around the world is rudimentary at best. Similarly, while agroforestry is well recognized as a land use practice capable of producing biomass for biopower and biofuels, very little information is available on this topic. This thematic issue is an attempt to bring together a collection of articles on C sequestration and biomass for energy, two topics that are inextricably interlinked and of great importance to the agroforestry community the world over. These papers not only address the aboveground C sequestration, but also the belowground C and the role of decomposition and nutrient cycling in determining the size of soil C pool using specific case studies. In addition to providing allometric methods for quantifying biomass production, the biological and economic realities of producing biomass in agroforestry practices are also discussed. 相似文献
80.
A. R. Gillespie S. Jose D. B. Mengel W. L. Hoover P. E. Pope J. R. Seifert D. J. Biehle T. Stall T. J. Benjamin 《Agroforestry Systems》2000,48(1):25-40
With renewed interest in the use of ecologically-designed, sustainable agricultural systems for temperate regions of the world, agroforestry is being proposed as an alternative to intensive production of crops in monocultures. However, the knowledge-base for understanding and managing complex, multi-strata systems worldwide is limited, particularly so for temperate regions. We examined an alley cropping system in the midwestern US where maize (Zea mays L.) is grown in alleys between tree rows of either black walnut (Juglans nigra L.) or red oak (Quercus rubra L.). During a course of ten years, crop yields in rows adjacent to tree rows declined by 50% or more. With the experimental introduction of barriers to separate tree and crop root systems, yields in the rows near trees were equal to those of the center row (and monoculture). Irrespective of a high correlation between photosynthetically active radiation and net photosynthesis, shading did not have a major influence on crop yield. At this stage of system development (11 year old trees), influence of incident PAR on crop yield seems to be minimal. Subsequent papers in this series examine the sharing of belowground resources between trees and crops to quantify the competitive interactions that impact crop yields and their implications for economic return to the farmer.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献