首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24271篇
  免费   421篇
  国内免费   10篇
林业   4108篇
农学   1538篇
基础科学   193篇
  4079篇
综合类   1918篇
农作物   2611篇
水产渔业   2409篇
畜牧兽医   4073篇
园艺   1274篇
植物保护   2499篇
  2023年   46篇
  2022年   71篇
  2021年   138篇
  2020年   152篇
  2019年   175篇
  2018年   2841篇
  2017年   2814篇
  2016年   1327篇
  2015年   194篇
  2014年   198篇
  2013年   348篇
  2012年   1189篇
  2011年   2651篇
  2010年   2374篇
  2009年   1517篇
  2008年   1820篇
  2007年   2046篇
  2006年   539篇
  2005年   630篇
  2004年   537篇
  2003年   629篇
  2002年   477篇
  2001年   97篇
  2000年   128篇
  1999年   101篇
  1998年   85篇
  1997年   76篇
  1996年   67篇
  1995年   90篇
  1994年   86篇
  1993年   85篇
  1992年   63篇
  1991年   54篇
  1990年   64篇
  1989年   50篇
  1988年   52篇
  1987年   37篇
  1986年   48篇
  1985年   51篇
  1984年   50篇
  1983年   46篇
  1982年   32篇
  1981年   25篇
  1980年   34篇
  1979年   29篇
  1978年   37篇
  1977年   43篇
  1976年   35篇
  1975年   38篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
331.
High fertilizer prices and improved environmental stewardship have increased interest in grass-legume mixed pastures. It has been hypothesized, but not validated, that the ecological combining ability between grasses and legumes can be improved by breeding specifically for mixture performance. This experiment examined the predicted efficiency of selection in a grass monoculture environment to indirectly improve tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) forage mass in a grass-legume mixture. Heritability, genetic and rank correlations, and selection efficiencies were estimated for forage mass in a tall fescue half-sib population grown as spaced-plants overseeded with either turf-type tall fescue (monoculture) or alfalfa (mixture). Heritability for tall fescue forage mass in monoculture ranged from 0.32 to 0.70 and were always similar or greater than those in mixture (range 0.27–0.55) for four successive harvests and annual total. Genetic correlations between monoculture and mixture tall fescue forage mass varied with values of 0.48, 0.92, ?0.31, 0.70, and 0.25 in June, July, August, October, and annual total, respectively. Indirect selection efficiencies exceeded or approached direct selection for mixtures only in July and October (1.29, and 0.73, respectively). Whereas, indirect selection efficiencies were low in June, August, and annual forage mass (0.58, ?0.31, and 0.28, respectively). Moreover, low Spearman’s rank correlations (?0.03 to 0.35) indicated differing half-sib family performance between the monoculture and mixture environments. Results indicate that direct selection should be used to improve tall fescue forage mass in a grass-legume mixture, and support the hypothesis of increasing ecological combining ability by breeding for mixtures per se.  相似文献   
332.
Fusarium spp. cause severe damage in many agricultural crops, including sugar beet, with Fusarium oxysporum historically being considered as the most damaging of all species. Sugar beet needs to be protected from this class of soil-borne pathogens in order to ensure an optimal sugar yield in the field. Genetic control of the disease is crucial in managing these pathogens. Identification of single nucleotide polymorphism (SNP) markers linked to resistance can be a powerful tool for the introgression of valuable genes needed to develop Fusarium-resistant varieties. A candidate gene approach was carried out to identify SNP markers linked to putative Fusarium resistance sources in sugar beet. Five resistant analogue genes (RGAs) were screened by means of high resolution melting (HRM) analysis in a set of sugar beet lines, considered as resistant and susceptible to Fusarium oxysporum. HRM polymorphisms were observed in 80% of amplicons. Two HRM polymorphisms were significantly associated with Fusarium resistance (P < 0.05). The amplicons that showed association were sequenced and two SNPs were identified. The association was further validated on 96 susceptible and 96 resistant plants using competitive allele-specific PCR (KASPar) technology. The selected SNPs could be used for marker-assisted breeding of Fusarium resistance in sugar beet.  相似文献   
333.
334.
Trace metal elements are essential in daily diets for human health and normal growth. Maize is staple food for people in many countries. However, maize has low mineral concentration which makes it difficult to meet human requirements for micronutrients. The objective of this study was to identify quantitative trait locus (QTL) and predict candidate genes associated with mineral concentration in maize grain. Here, a recombinant inbred line population was used to test phenotype of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn) concentrations in six environments and then a QTL analysis was conducted using single environment analysis along with multiple environment trial (MET) analysis. These two strategies detected a total of 64 and 67 QTLs for target traits, respectively. Single environment analysis revealed 13 QTL bins distributed on seven chromosomes. We found that five candidate genes associated with mineral concentration were located in the same intervals identified by Comparative mapping of meta-QTLs in our previous study. The genetic and phenotypic correlation coefficients were depended on the nutrient traits and they were significant between Fe and Zn, Fe and Cu, Fe and Mn in all environments. The results of this study illustrated the genetic correlation between maize grain mineral concentrations, and identified some promising genomic regions and candidate genes for further studies on the biofortification of mineral concentration in maize grain.  相似文献   
335.
Fusarium verticillioides and Aspergillus flavus cause Fusarium ear rot (FER) and Aspergillus ear rot (AER) of maize, respectively. Both pathogens are of concern to producers as they reduce grain yield and affect quality. F. verticillioides and A. flavus also contaminate maize grain with the mycotoxins fumonisins and aflatoxins, respectively, which has been associated with mycotoxicosis in humans and animals. The occurrence of common resistance mechanisms to FER and AER has been reported. Hence, ten Kenyan inbred lines resistant to AER and aflatoxin accumulation were evaluated for resistance to FER, F. verticillioides colonisation and fumonisin accumulation; and compared to nine South African lines resistant to FER and fumonisin accumulation. Field trials were conducted at three localities in South Africa and two localities in Kenya. FER severity was determined by visual assessment, while F. verticillioides colonisation and fumonisin content were quantified by real-time PCR and liquid chromatography tandem mass spectrometry, respectively. Significant genotype x environment interactions was determined at each location (P ≤ 0.05). Kenyan inbred CML495 was most resistant to FER and F. verticillioides colonisation, and accumulated the lowest concentration of fumonisins across localities. It was, however, not significantly more resistant than Kenyan lines CML264 and CKL05015, and the South African line RO549 W, which also exhibited low FER severity (≤5%), fungal target DNA (≤0.025 ng μL?1) and fumonisin levels (≤2.5 mg kg?1). Inbred lines resistant to AER and aflatoxin accumulation appear to be promising sources of resistance to F. verticillioides and fumonisin contamination.  相似文献   
336.
Soil and root samples were collected from major tomato growing areas of Ethiopia during the 2012/2013 growing season to identify root-knot nematode problems. DNA-based and isozyme techniques revealed that Meloidogyne incognita and M. javanica were the predominant Meloidogyne species across the sampled areas. The aggressiveness of different populations of these species was assessed on tomato cultivars Marmande and Moneymaker. The two most aggressive populations of each species were selected and further tested on 33 tomato genotypes. The resistance screening and mechanism of resistance was performed after inoculation with 100 freshly hatched (<24 h) second-stage juveniles (J2). Eight weeks after inoculation the number of egg masses produced on each cultivar was assessed. For the resistance mechanism study, J2 penetration and their subsequent development inside the tomato roots were examined at 1, 2, 4 and 6 weeks after inoculation. On both cultivars Marmande and Moneymaker all M. incognita and M. javanica populations formed a high number of egg masses indicating highly aggressive behaviour. Populations from ‘Jittu’ and ‘Babile’ for M. incognita and ‘Jittu’ and ‘Koka’ for M. javanica were selected as most aggressive. None of the 33 tomato genotypes were immune for these M. incognita and M. javanica populations. However, several tomato genotypes were found to have a significant effect on the number of egg masses produced indicating possible resistance. For M. javanica populations there were more plants from cultivars or breeding lines on which no egg masses were found compared to M. incognita populations. The lowest number of egg masses for both populations of M. incognita was produced on cultivars Bridget40, Galilea, and Irma while for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-2366B and CLN-2366C. Tomato genotypes, time (weeks after inoculation) and their interaction were significant sources of variation for J2 penetration and their subsequent development inside the tomato roots. Differential penetration was found in breeding lines such as CLN-2366A, CLN-2366B and CLN-2366C, but many of the selected tomato genotypes resistance for the tested M. incognita and M. javanica populations were expressed by delayed nematode development. Therefore, developing a simple screening technique to be used by local farmers or extension workers is crucial to facilitate selection of a suitable cultivar.  相似文献   
337.
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape.  相似文献   
338.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   
339.
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes.  相似文献   
340.
Soybean aphid (Aphis glycines Matsumura) has become one of the major pests of soybean [Glycine max (L.) Merr.] in North America since 2000. At least four biotypes of soybean aphid have been confirmed in the United States. Genetic characterization of new sources of soybean aphid resistance will facilitate the expansion of soybean gene pool for soybean aphid resistance and thus will help to develop soybean aphid resistant cultivars. To characterize the genetic basis of soybean aphid resistance in PI 603712, a newly identified resistant germplasm line, 142 F2 plants derived from the cross ‘Roberts’ × PI 603712 and their parents were evaluated for soybean aphid resistance in the greenhouse, and were genotyped with BARCSoySNP6K Illumina Infinium II BeadChip. A genome-wide molecular linkage map was constructed with 1495 polymorphic SNP markers. QTL analysis revealed that PI 603712 possessed two major loci associated with soybean aphid resistance, located on chromosome 7 and 16, respectively. The locus on chromosome 7 was dominantly expressed and positioned about one Mega-base-pair distant from the previously identified resistance locus Rag1. The locus on chromosome 16 was positioned near the previously identified resistance locus Rag3 and expressed partially dominance or additive effect. Interestingly, two minor loci were also detected on chromosomes 13 and 17 but the alleles from PI 603712 decreased the resistance. In developing soybean aphid resistant cultivars through marker-assisted selection, an appropriate combination of resistance loci should be selected when PI 603712 is used as a donor parent of resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号