首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33968篇
  免费   880篇
  国内免费   1840篇
林业   5956篇
农学   3938篇
基础科学   1352篇
  5794篇
综合类   5664篇
农作物   3241篇
水产渔业   2520篇
畜牧兽医   3336篇
园艺   1708篇
植物保护   3179篇
  2024年   42篇
  2023年   188篇
  2022年   419篇
  2021年   619篇
  2020年   590篇
  2019年   624篇
  2018年   3100篇
  2017年   3134篇
  2016年   1688篇
  2015年   779篇
  2014年   690篇
  2013年   887篇
  2012年   1815篇
  2011年   3256篇
  2010年   3131篇
  2009年   2248篇
  2008年   2321篇
  2007年   2555篇
  2006年   1047篇
  2005年   1012篇
  2004年   609篇
  2003年   536篇
  2002年   355篇
  2001年   341篇
  2000年   450篇
  1999年   571篇
  1998年   531篇
  1997年   459篇
  1996年   371篇
  1995年   377篇
  1994年   309篇
  1993年   343篇
  1992年   271篇
  1991年   243篇
  1990年   183篇
  1989年   153篇
  1988年   145篇
  1987年   89篇
  1986年   48篇
  1985年   24篇
  1984年   24篇
  1983年   17篇
  1982年   14篇
  1981年   17篇
  1980年   11篇
  1979年   5篇
  1977年   7篇
  1974年   6篇
  1968年   10篇
  1967年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.

Context

North American grassland songbird populations have declined significantly due to habitat loss and fragmentation. Understanding the influence of the surrounding landscape on prairie fragment occupancy is vital for predicting the fate of grassland birds in these heavily altered landscapes.

Objectives

We examined the relative importance of local and landscape variables on grassland bird occupancy of prairie fragments using a focal-patch study. We also investigated the spatial scale at which landscape variables were most influential.

Methods

We surveyed birds on 29 unplowed prairie fragments in western Minnesota and eastern North and South Dakota. We quantified local habitat on the fragment using vegetation surveys and aerial photographs and the landscape surrounding the fragment out to 4 km using aerial photographs. We analyzed occupancy using multi-model approaches applied to multiple logistic regression.

Results

Of 38 species encountered, nine were neither too rare nor too abundant to be analyzed. Predictors of patch occupancy were unique for each bird species, yet general patterns emerged. For eight species, landscape variables were more important than local variables. Mostly, those landscape variables measured configuration (e.g., edge density) and not composition (e.g., percent cover of a particular matrix element). Landscape effects were mostly from variables measured at the greatest extents from the prairie fragment.

Conclusions

Using a focal-patch study design we demonstrated the importance of the surrounding landscape, often out to 4 km from the fragment edge, on prairie occupancy by grassland birds. Effective management of grassland songbirds will require attention to the landscape context of prairie fragments.
  相似文献   
992.

Context

Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change.

Objectives

Our objective was to determine which spatial drivers will control landscape resilience over the next century, given a range of plausible climate projections across north-central Minnesota.

Methods

Using a simulation modelling approach, we simulated wind disturbance in a 4.3 million ha forested landscape in north-central Minnesota for 100 years under historic climate and five climate change scenarios, combined with four management scenarios: business as usual (BAU), maximizing economic returns (‘EcoGoods’), maximizing carbon storage (‘EcoServices’), and climate change adaption (‘CCAdapt’). To estimate resilience, we examined sites where simulated windstorms removed >70% of the biomass and measured the difference in biomass and species composition after 50 years.

Results

Climate change lowered resilience, though there was wide variation among climate change scenarios. Resilience was explained more by spatial variation in soils than climate. We found that BAU, EcoGoods and EcoServices harvest scenarios were very similar; CCAdapt was the only scenario that demonstrated consistently higher resilience under climate change. Although we expected spatial patterns of resilience to follow ownership patterns, it was contingent upon whether lands were actively managed.

Conclusions

Our results demonstrate that resilience may be lower under climate change and that the effects of climate change could overwhelm current management practices. Only a substantial shift in simulated forest practices was successful in promoting resilience.
  相似文献   
993.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   
994.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   
995.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   
996.

Context

Dispersal has important fitness consequences for individuals, populations, and species. Despite growing theoretical insights into the evolution of dispersal, its behavioral underpinnings remain empirically understudied, limiting our understanding of the extent and impact of responses to landscape-level heterogeneity of environments, and increasing the risk of inferring species-level responses from biased population sampling.

Objectives

We asked if predictable ecological variation among naturally fragmented arid waterbodies is correlated with disparate dispersal responses of populations of the desert goby Chlamydogobius eremius, which naturally inhabits two habitat “types” (permanent springs, ephemeral rivers), and different levels of hydrological connectivity (high and low) that potentially convey different costs and benefits of dispersal.

Methods

To test for possible behavioral divergence between such populations, we experimentally compared the movement behaviors (correlates of emigration and exploration) of wild-caught fish. We used two biologically relevant spatial scales to test movement relevant to different stages of the dispersal process.

Results

Behavior differed at both spatial scales, suggesting that alternative dispersal strategies enable desert gobies to exploit diverse habitat patches. However, while emigration was best predicted by the connectivity (flood risk) of fish habitats, exploration was linked to their habitat type (spring versus river).

Conclusions

Our findings demonstrate that despite a complex picture of ecological variation, key landscape factors have an overarching effect on among-population variation in dispersal traits. Implications include the maintenance of within-species variation, potentially divergent evolutionary trajectories of naturally or anthropogenically isolated populations, and the direction of future experimental studies on the ecology and evolution of dispersal behavior.
  相似文献   
997.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   
998.

Context

Landscape graphs are widely used to model connectivity and to support decision-making in conservation planning. Compartmentalization methods applied to such graphs aim to define clusters of highly interconnected patches. Recent studies show that compartmentalization based on modularity is suitable, but it applies to non-weighted graphs whereas most landscape graphs involve weighted nodes and links.

Objectives

We propose to adapt modularity computation to weighted landscape graphs and to validate the relevance of the resulting compartments using demographic or genetic data about the patches.

Methods

A weighted adjacency matrix was designed to express potential fluxes, associating patch capacities and inter-patch distances. Eight weighting scenarios were compared. The statistical evaluation of each compartmentalization was based on Wilks’ Lambda. These methods were performed on a grassland network where patches are documented by annual densities of water voles in the Jura massif (France).

Results

The scenarios in which patch capacity is assigned a small weight led to the more relevant results, giving high modularity values and low Wilks’ Lambda values. When considering a fixed number of compartments, we found a significant negative correlation between these two criteria. Comparison showed that compartments are ecologically more valid than graph components.

Conclusions

The method proposed is suitable for designing ecologically functional areas from weighted landscape graphs. Maximum modularity values can serve as a guide for setting the parameters of the adjacency matrix.
  相似文献   
999.

Context

Cultural ecosystem services, many of which depend on biodiversity, are recognized as important but seldom quantified biophysically across landscapes. Furthermore, many ecosystem service models are static, and the supply of cultural ecosystem services may be misrepresented if seasonal shifts in biotic communities are ignored.

Objectives

We modeled landscape dynamics of wildflower blooms in a temperate montane landscape to determine (1) how floral resources (wildflower species richness, abundance, timing, and presence of charismatic species) changed over the growing season, (2) how projected wildflower viewing hotspots varied over space and time, and (3) how spatial shifts in floral resources affected potential public access to wildflower viewing.

Methods

Data were collected at 63 sites across a rural-to-urban gradient in the Southern Appalachian Mountains (USA). Generalized linear models were used to identify factors affecting floral resources at two temporal scales. Floral resources were projected across the landscape and hotspots of wildflower viewing were quantified using overlay analysis.

Results

Floral resources were affected by topoedaphic conditions, climate, and surrounding building density and changed seasonally. Seasonal models revealed locational shifts in ecosystem service hotspots, which changed the proportion of hotspots accessible to the public and identified wildflower-viewing opportunities unnoticed by static models.

Conclusion

Relationships between landscape gradients, biodiversity, and ecosystem service supply varied seasonally, and our models identified cultural ecosystem service hotspots otherwise obscured by simple proxies. Landscape models of biodiversity-based cultural ecosystem services should include seasonal dynamics of biotic communities to avoid under- or over-emphasizing the importance of particular locations in ecosystem service assessments.
  相似文献   
1000.

Context

The study of habitat fragmentation is complex because multiple, potentially synergistic, ecological processes may be acting simultaneously. Further, edge effects themselves may be complex in that additivity from multiple edges can give rise to heterogeneous nearest–edge gradients.

Objectives

We used heat diffusion as a proxy for additive edge effects in two study landscapes in order to test whether two key observations recently attributed to synergy between edge and area effects could be more simply explained by additivity; namely, steeper edge gradients in larger fragments and variation in slopes of species–area relationships as a function of distances to fragment edges.

Methods

We sampled forest structure in northwestern Madagascar at various distances from the edge in fragments and continuous forest and used an inverse modelling approach to parameterize the model. In addition, we applied the model to data from a published study of beetle communities in fragmented forests in New Zealand.

Results

With increasing proximity to edges, woody stem densities decreased and, as predicted, smaller fragments had lower stem densities and less steep edge gradients than larger ones. The model successfully predicted shifts in species–area relationships as a function of nearest–edge distances for beetle species, although observed richness for forest specialists in the smallest fragments was lower than predicted.

Conclusions

Two key observations attributed to synergy between edge and area effects were explained by edge additivity. The model is particularly useful in that it can help to disentangle the complex sets of processes acting in fragmented landscapes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号