首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   3篇
林业   3篇
农学   4篇
基础科学   2篇
  30篇
综合类   6篇
农作物   9篇
水产渔业   2篇
畜牧兽医   19篇
园艺   3篇
植物保护   2篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2003年   3篇
  2002年   3篇
  1995年   2篇
  1955年   1篇
排序方式: 共有80条查询结果,搜索用时 984 毫秒
21.
22.
23.
24.
Artificial urine, an aqueous solution of various nitrogenous compounds and salts, is routinely used in soil incubation studies on nitrous oxide (N2O) emissions and related nitrogen (N) and pH dynamics. There is, however, no consensus on artificial urine composition, and a wide variety of compositions are used. The aim of this study was to test which artificial urine composition is adequate for simulating N2O fluxes, respiration, soil mineral N and pH dynamics of real cattle urine in both short- and long-term incubation studies. Urine solutions of differing compositions were applied to a sandy soil and incubated for 65 days, and results of measurements on N2O fluxes and soil mineral N were analyzed over the first 5 days as well as over the whole incubation period. Results from two real cattle urines with known nitrogenous composition (R1 and R2) were compared with three artificial urine types: (i) urea+glycine (AG), (ii) urea+hippuric acid (AH) and (iii) an artificial urine identical to the nitrogenous composition of real urine R1 (AR). During the first 5 days, only cumulative N2O emissions for AG deviated significantly (P=0.02) from the N2O emissions for real urines, with 0.4% of applied N emitted compared with 0.0% and 0.1% for R1 and R2, respectively. Respiration from R1 was significantly (P<0.001) higher than from R2 and all artificial urines. Over the whole incubation period, no significant differences could be detected for N2O emissions or respiration with urine type. From all artificial urine types, AH yielded N2O emissions closest to those from real urine. AG deviated most from real urine, both in short- and long-term incubations. Over the whole period, soil NH4+ was higher for all artificial urines (P<0.001) and pH-KCl was lower for AG and AR (P=0.004) than for the real urines. AH was not significantly different from real urine R2 with respect to all measured properties except soil NH4+. We conclude that only AG did not adequately simulate N2O emissions, and that glycine is therefore not an appropriate substitution for hippuric acid in artificial urine. For future studies using artificial urine we recommend therefore a mixture containing at least urea and hippuric acid as sources of N. As no artificial urine composition resembled real urine with respect to all measured variables, even when nitrogenous composition was identical (AR), we recommend the use of real urines whenever possible.  相似文献   
25.
Gluten strength is an important characteristic, determining the end product quality of durum wheat semolina. To identify the genetic basis of gluten strength in North Dakota durum cultivars, a doubled haploid population was developed from the cross of a weak gluten cultivar ‘Rugby’ and a strong gluten cultivar ‘Maier’. A framework linkage map consisting of 228 markers was constructed and used with phenotypic data on gluten strength (measured by sedimentation volume) to conduct single- and two-locus QTL analyses. Only one consistent QTL (QGs.ndsu-1B) contributing up to 90% of the phenotypic or 93% of the genotypic variation was detected on 1BS. No QTL × QTL or QTL × environment interactions were observed. The QGs.ndsu-1B was flanked by two DArT markers which were converted to STS markers and used along with SSR and EST-SSRs to develop a map of 1BS. QTL analysis delineated QGs.ndsu-1B in a 7.3 cM region flanked by an STS marker (STS-wPt2395) and a SSR marker (wmc85). The adapted background of this material and availability of PCR-based markers closely associated with this locus represent invaluable resources for marker-assisted introgression of gluten strength into other durum wheat varieties. A single QTL segregating in this population also makes it an ideal target for map-based cloning.  相似文献   
26.
Interpretation of the oxygen isotopic signature of soil-derived N2O may be flawed when it is based on reaction stoichiometry and fractionation alone. In fact, oxygen (O) exchange between H2O and intermediates of N2O production pathways may largely determine this O isotopic signature. Although in our previous work we conclusively proved the occurrence of O exchange during N2O production by denitrification of NO3, its occurrence in N2O production pathways by nitrifiers remains unclear. The aim of this study was to examine the likeliness of O exchange during various stages of N2O production in soil via nitrification, nitrifier denitrification and denitrification. We evaluated a set of scenarios on the presence of such exchange using data from a series of 18O and 15N tracing experiments. The measured actual O incorporation from H2O into N2O (AOI) was compared with the theoretical maximum O incorporation (MOI) from various scenarios that differed in their assumptions on the presence of O exchange. We found that scenarios where O exchange was assumed to occur exclusively during denitrification could not explain the observed AOI, as it exceeded the MOI for 9 out of 10 soils. This demonstrates that additional O exchange must have occurred in N2O production through nitrifier pathways. It remains to be determined in which steps of these pathways O exchange can take place. We conclude that O exchange is likely to be mediated by ammonia oxidizers during NO2 reduction (nitrifier denitrification), and that it could possibly occur during NO2 oxidation to NO3 by nitrite oxidizers as well.  相似文献   
27.
More details have yet to be indicated on the interactions between arbuscular mycorrhizal (AM) fungi and phosphorus (P) chemical fertilization under field conditions. Accordingly, the objectives were to: (1) evaluate the combined effects of mycorrhizal fungi and chemical P fertilization on maize yield, yield components, and nutrient uptake and (2) indicate the optimum rate of P chemical fertilization (P1, P2, P3) with the use of mycorrhizal fungi (Glomus intraradices and G. mosseae). A factorial experiment using randomized complete blocks with three replicates, conducted at the Research Station of the Faculty of Agriculture, Islamic Azad University, Tabriz branch, Iran. Results indicated the significant effect of P, AM fungi, and their interaction on most of the measured traits. Grain yield (7909.3 kg/ha), maize nutrient content of P (0.39%), zinc (Zn) (42.1 mg/kg), iron (Fe) (68.3 mg/kg), and the colonization rate (47.5%) were all the highest by the interaction of G intraradices × P2.  相似文献   
28.
Soil salinity and arbuscular mycorrhizal fungi (AMF) influence the soil hydrophobicity. An experiment was performed to determine the effects of soil salinity and AMF species on soil water repellency (SWR) under wheat (Triticum aestivum L.) crop. Six AMF treatments, including four exotic species (Rhizophagus irregularis, Funneliformis mosseae and Claroideoglomus claroideum, a mix of three species), one mix native AMF species treatment and an AMF-free soil in combination with four salinity levels (1, 5, 10, and 15 dS m?1) were used. The soil repellency index (RI) increased with salinity increment ranging from 2.4 to 10.5. The mix of three exotic and native AMF treatments enhanced the RI significantly compared to AMF-free soil in all salinity levels with one exception for native treatment at 1 dS m?1. Among individual AMF species, the C. claroideum treatment at 10 dS m?1 increased the RI by 67% compared to AMF-free soil. The native AMF treatment was more efficient in root colonization, glomalin production and SWR development at 10 and 15 dS m?1, compared to exotic species. In addition to the net positive effect of salinity on SWR, the AMF influences on the RI were greatly dependent on salinity levels.  相似文献   
29.
Background: CD4+ and CD8+ T cells are the main types of lymphocytes in cell-mediated immunity and play a central role in the induction of efficient immune responses against tumors. The frequencies of T cell subtypes in the peripheral blood and tumor tissues, and draining lymph nodes (dLN) can be considered as useful markers for evaluation of the immune system in cancers. Methods: In this study, the frequencies of CD4+ and CD8+ T cells in blood, tumor tissues, and dLN samples of breast cancer patients were compared with each other and with similar tissues from normal individuals. Immunophenotyping was carried out by flow cytometry and the expression levels of CXCL10, granzyme B, and mammaglobin were evaluated by real-time PCR. Results: In the peripheral blood, there were no differences in the T cell subsets between the patients and the normal individuals. The frequency of CD8+ T cells was significantly higher in tumor tissue than normal breast tissues while granzyme B expression was similar. Based on mammaglobin expression levels, dLN have been classified into micro- and macro-metastatic dLN. We found significantly lower frequency of CD4+ in macro-metastatic dLN than micro-metastatic dLN. CD8+ frequency was similar in both dLN; however, granzyme B expression was higher in micro-metastatic ones. There was not any significant difference in CXCL10 expression between the two types of dLN. Conclusion: Based on our results, although the tumor does not affect the systemic immunity, tumoral cells affect the local immune system in the tumoral tissues and the metastatic dLN. Key Words: Breast neoplasms, CD4+ T lymphocyte, CD8+ T lymphocytes, CXCL10, Granzymes  相似文献   
30.
Enhancement of manganese (Mn) availability in saline and Mn-deficient soils is very important for plant growth. An experiment was carried out to evaluate the effect of Pseudomonas sp. rhizobacteria (P0 (control), P1, P2 and P3) and Mn (0 and 10 mg Mn kg?1 soil) on the distribution of Mn in the rhizosphere of pistachio seedlings under salinity stress (0, 1000 and 2000 mg NaCl kg?1 soil). The results showed that salinity decreased the dry weight, Mn uptake and chlorophyll content of the pistachio seedlings. However, inoculation with rhizobacteria increased these parameters in saline conditions. Application of rhizobacteria increased the availability of Mn in the rhizosphere soil. The use of rhizobacteria decreased the residual-Mn form in the rhizosphere. Inoculation with rhizobacteria increased the percent of Mn2+ and MnCl+ species in the soil solution. However, pistachio seedlings inoculation with rhizobacteria increased the contents of Mn available forms in the rhizosphere soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号