首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30652篇
  免费   754篇
  国内免费   1767篇
林业   5321篇
农学   3532篇
基础科学   1502篇
  5351篇
综合类   4660篇
农作物   2849篇
水产渔业   2307篇
畜牧兽医   3192篇
园艺   1533篇
植物保护   2926篇
  2024年   41篇
  2023年   129篇
  2022年   393篇
  2021年   568篇
  2020年   497篇
  2019年   487篇
  2018年   3039篇
  2017年   3110篇
  2016年   1670篇
  2015年   755篇
  2014年   657篇
  2013年   731篇
  2012年   1601篇
  2011年   3101篇
  2010年   2955篇
  2009年   2111篇
  2008年   2100篇
  2007年   2448篇
  2006年   796篇
  2005年   828篇
  2004年   464篇
  2003年   466篇
  2002年   315篇
  2001年   281篇
  2000年   393篇
  1999年   413篇
  1998年   358篇
  1997年   350篇
  1996年   303篇
  1995年   311篇
  1994年   270篇
  1993年   235篇
  1992年   190篇
  1991年   172篇
  1990年   140篇
  1989年   127篇
  1988年   142篇
  1987年   61篇
  1986年   37篇
  1985年   21篇
  1984年   21篇
  1983年   21篇
  1982年   22篇
  1981年   10篇
  1980年   10篇
  1979年   7篇
  1977年   4篇
  1968年   4篇
  1964年   3篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
991.

Background

Fixed arrays of single nucleotide polymorphism (SNP) markers have advantages over reduced representation sequencing in their ease of data analysis, consistently higher call rates, and rapid turnaround times. A 6 K SNP array represents a cost-benefit “sweet spot” for routine genetics and breeding applications in rice. Selection of informative SNPs across species and subpopulations during chip design is essential to obtain useful polymorphism rates for target germplasm groups. This paper summarizes results from large-scale deployment of an Illumina 6 K SNP array for rice.

Results

Design of the Illumina Infinium 6 K SNP chip for rice, referred to as the Cornell_6K_Array_Infinium_Rice (C6AIR), includes 4429 SNPs from re-sequencing data and 1571 SNP markers from previous BeadXpress 384-SNP sets, selected based on polymorphism rate and allele frequency within and between target germplasm groups. Of the 6000 attempted bead types, 5274 passed Illumina’s production quality control. The C6AIR was widely deployed at the International Rice Research Institute (IRRI) for genetic diversity analysis, QTL mapping, and tracking introgressions and was intensively used at Cornell University for QTL analysis and developing libraries of interspecific chromosome segment substitution lines (CSSLs) between O. sativa and diverse accessions of O. rufipogon or O. meridionalis. Collectively, the array was used to genotype over 40,000 rice samples. A set of 4606 SNP markers was used to provide high quality data for O. sativa germplasm, while a slightly expanded set of 4940 SNPs was used for O. sativa X O. rufipogon populations. Biparental polymorphism rates were generally between 1900 and 2500 well-distributed SNP markers for indica x japonica or interspecific populations and between 1300 and 1500 markers for crosses within indica, while polymorphism rates were lower for pairwise crosses within U.S. tropical japonica germplasm. Recently, a second-generation array containing ~7000 SNP markers, referred to as the C7AIR, was designed by removing poor-performing SNPs from the C6AIR and adding markers selected to increase the utility of the array for elite tropical japonica material.

Conclusions

The C6AIR has been successfully used to generate rapid and high-quality genotype data for diverse genetics and breeding applications in rice, and provides the basis for an optimized design in the C7AIR.
  相似文献   
992.
Randomized complete block (RCB) design is the most widely used experimental design in biological sciences. As number of treatments increases, the block size become larger and it looses the capacity to control the variance within block, which is its original purpose. A method known as post hoc blocking could be used in these cases to improve the genetic parameter estimation and thus obtain an unbiased assessment of the performance of a given treatment. In trufgrass breeding, as other breeding program, this is a common challenge. The goal of this study was to test the capacity of different post hoc blocking designs to improve the genetic parameter estimation of zoysiagrass (Zoysia spp.). We evaluated two post hoc blocking designs; row–column (R–C) and incomplete block (IB) designs on five genotype trials located in Florida. The results showed that post hoc R–C design had superior model fitting than both the original RCB and the post hoc IB designs when studied at the single measurement level and at the site level. The narrow-sense heritability (0.24–0.40) and the genotype-by-measurement correlation (0.57–0.99) did not change significantly when R–C was compared to the original RCB design. The ranking of the top performing genotypes changed considerably when comparing RCB to R–C design, but the degree depended on the location analyzed. We conclude that the change in the ranking of the top (potentially select individuals) is coming from the better control of intra-block environmental variation, and this could potentially have a significant impact on the breeding selection process.  相似文献   
993.
Ashy stem blight (ASB) caused by Macrophomina phaseolina (Tassi) Goidanich (Mp) is a devastating seed-transmitted disease in common bean in the tropics. The identification of resistant cultivars throughout the cropping season contributes to disease management. Resistance is found in the primary and tertiary gene pools. Our objectives were to determine (1) the reaction of Phaseolus spp. genotypes to two Mp isolates at vegetative and reproductive stages, (2) the area under disease progress curve (AUDPC), and (3) resistant plants per genotype at harvest. Twenty-three genotypes from different origins were planted in the greenhouse in 2016 and 2017. One less-aggressive Mp (PRJD16) and one more-aggressive (PRI16) isolate were inoculated one and three times, respectively, by the cut-stem method. ‘Beníquez’, ‘Othello’, and ‘Verano’ were highly susceptible (mean scores >8.0, and AUDPC values from 264.6 to 300.8) to both isolates. BAT 477 and NY6020-4 were intermediate (5.6 and 6.2; AUDPC: 161.6 and 187.1) to PRJD16 and susceptible (7.4 and 8.2; AUDPC: 209.4 and 235.1) to PRI16. Resistant genotypes (mean scores ≤3) were not identified in this study. However, A 195, ‘Badillo’, and ‘PC 50’ possessed lower mean scores (4.3–5.4) and AUDPC values (126.4–150.9) to both isolates. Furthermore, A 195 had the highest percentage of resistant plants (55.6%) followed by PC 50, I9365-31, and PI 321637 (27.8%) to PRJD16 at harvest. Thus, the identification of resistant parents across Phaseolus species is necessary to increase the levels of ASB resistance in common bean cultivars throughout the entire cropping season.  相似文献   
994.
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape.  相似文献   
995.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   
996.
Plant landraces have long been recognized as potential gene pools for biotic and abiotic stress-related genes. This research used spring wheat landrace accessions to identify new sources of resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton), an important insect pest of wheat in the northern Great Plains of North America. Screening efforts targeted 1409 accessions from six geographical areas of the world where other species of grain sawflies are endemic or where a high frequency of accessions possesses the resistance characteristic of solid stems. Resistance was observed in approximately 14% of accessions. Half of the lines displayed both antixenosis and antibiosis types of resistance. Among the resistant accessions, 41% had solid or semi-solid stems. Molecular genetic screening for haplotypes at the solid stem QTL, Qss.msub.3BL, showed that 15% of lines shared the haplotype derived from ‘S-615’, the original donor of the solid stem trait to North American germplasm. Other haplotypes associated with solid stems were also observed. Haplotype diversity was greater in the center of origin of wheat. Evaluation of a representative set of resistant landrace accessions in replicated field trials at four locations over a three year period identified accessions with potential genes for reduced WSS infestation, increased WSS mortality, and increased indirect defense via parasitoids. Exploitation of distinct types of plant defense will expand the genetic diversity for WSS resistance currently present in elite breeding lines.  相似文献   
997.
In situ conservation of wild species is a method of conservation that allows keeping populations in their natural environments, and set the strategies for maintaining the natural populations. The Active Bank of Northwestern Argentina (BANOA) is in charge of the in situ conservation of wild populations of common bean (Phaseolus vulgaris L.) in Northwestern Argentina (NOA), and has an ex situ collection of 401 landraces and 221 wild accessions from the NOA. We evaluated the phenotypic diversity of 68 common bean wild populations from the NOA both in protected and unprotected areas, finding a moderate variation among them. Ten phenotypic reproductive characteristics related to pod and seed displayed significant differences in the analysis of variance; these traits together with the seed weight were the basis for the multivariate analysis. The cluster analysis ordered the populations in 12 groups but trends in geographical distribution or phenotypical variation were not recognized. For the conservation in situ of the wild bean populations, their diversity should be considered. Two types of populations can be highlighted: (i) candidates for in situ conservation in order to preserve the novel variation generated by convergence with cultivated sympatric germplasm (populations 433, 437, 471, 509, 513 and 517) and (ii) those whose phenotype represents clearly the wild status and should be preserved in situ as such in their current status (populations 480, 495, 496, 525 and 533).  相似文献   
998.
Regulation of flowering time in almond, as in other Prunus species, is a complex process involving both chill and heat requirements. Following exposure to appropriate consecutive periods of cold and warm temperatures, the buds break dormancy and sprout or flower depending on bud type. To maximize flowering and subsequent vegetative growth and fruit set, chilling and ensuing warm temperature requirements have to be fully satisfied. Because of its potential for very early flowering, flowering time in almond is a major determinant of its adaptation to new environments. In colder regions, Late-flowering is often necessary to avoid frost damage during and just after flowering. Consequently, the selection of delayed flowering times remains an important objective in almond improvement programs. Flowering time is considered a quantitative though highly heritable trait. In addition, a dominant gene (Late flowering, Lb), originally identified in a spontaneous mutation of the Californian almond cultivar ‘Nonpareil’, was also described. The objective of this review is a comparative analysis of the effects of regional adaptation, breeding and mutation on the delay of flowering time in new almond cultivars. Findings indicate that the adaptation of almonds from the Mediterranean basin to colder regions in Northern Europe and America has been mainly achieved through delayed flowering. These adapted late-flowering cultivars have usually been developed by selecting desired quantitative genes within each regional germplasm. Additional progress thus appears achievable with a more comprehensive understanding of the quantitative and qualitative genetics controlling this trait. The use of molecular markers for the early selection of genes conferring late flowering, including both spontaneous mutations as well as unique regional germplasm, should allow development of even later cultivars including ultra-late cultivars flowering as into April.  相似文献   
999.
Soybean yield components and agronomic traits are connected through physiological pathways that impose tradeoffs through genetic and environmental constraints. Our primary aim is to assess the interdependence of soybean traits by using unsupervised machine learning techniques to divide phenotypic associations into environmental and genetic associations. This study was performed on large scale, jointly analyzing 14 quantitative traits in a large multi-parental population designed for genetic studies. We collected phenotypes from 2012 to 2015 from a soybean nested association panel with 40 families of approximately 140 individuals each. Pearson and Spearman correlations measured phenotypic associations. A multivariate mixed linear model provided genotypic and environmental correlations. To evaluate relationships among traits, the study used principal component and undirected graphical models from phenotypic, genotypic, and environmental correlation matrices. Results indicate that high phenotypic correlation occurs when traits display both genetic and environmental correlations. In genetic terms, length of reproductive period, node number, and canopy coverage play important roles in determining yield potential. Optimal grain yield production occurs when the growing environment favors faster canopy closure and extended reproductive length. Environmental associations found among yield components give insight into the nature of yield component compensation. The use of unsupervised learning methods provides a good framework for investigating interactions among various quantitative traits and defining target traits for breeding.  相似文献   
1000.
Pepper huasteco yellow vein virus (PHYVV) is the main virus of pepper crop in Mexico. No resistant cultivars are available and resistance breeding is hampered by the lack of knowledge of heritability (h 2) of PHYVV resistance. This is a continuation of previous studies and the objectives were to analyze the h 2 and the behavior of the resistant trait to PHYVV. Four resistant assays were done with three resistant wild lines (UAS12, UAS13 and UAS10) of Capsicum annuum in the S4, S5, S6 and S7 generation under greenhouse conditions. Plants from all tests were inoculated with PHYVV through Bemisia tabaci. Line UAS12 was the most resistant showing a significantly proportion of resistant plants, less disease symptoms and longer incubation time, followed by the lines UAS13 and UAS10 in all assays. Distribution of symptoms showed a bimodal tendency in all the trials, suggesting that two groups of genes are involved in this resistance trait. The lines UAS12, UAS13 and UAS10 showed the same pattern of response to selection with an average of h 2 of 0.17, 0.06, 0.02 and 0.00 in the S4, S5, S6 and S7, respectively. These results indicate that all lines responded positively to the selection in the S4, S5 and S6, whereas in the S7 there was no response by the possible exhaustion of variation. Line UAS12 is the most promising genotype and the lines UAS13 and UAS10 are genetic resources that can be supplemented to breed the resistance of PHYVV. These results provides basic information for resistance breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号