首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16677篇
  免费   13篇
林业   3639篇
农学   1295篇
基础科学   138篇
  2788篇
综合类   751篇
农作物   2107篇
水产渔业   1791篇
畜牧兽医   1192篇
园艺   1112篇
植物保护   1877篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   2746篇
  2017年   2707篇
  2016年   1186篇
  2015年   64篇
  2014年   19篇
  2013年   15篇
  2012年   802篇
  2011年   2137篇
  2010年   2114篇
  2009年   1262篇
  2008年   1329篇
  2007年   1585篇
  2006年   46篇
  2005年   114篇
  2004年   118篇
  2003年   164篇
  2002年   69篇
  2001年   9篇
  2000年   42篇
  1999年   3篇
  1998年   3篇
  1995年   3篇
  1993年   13篇
  1992年   11篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1988年   18篇
  1987年   7篇
  1986年   2篇
  1985年   8篇
  1983年   7篇
  1977年   6篇
  1976年   4篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   5篇
  1968年   6篇
  1966年   3篇
  1965年   2篇
  1957年   1篇
  1955年   1篇
  1942年   1篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
991.

Purpose

Cadmium (Cd) is considered a toxic element and its concentrations are relevant to human health and the environment. Therefore, the purpose of the study was to determine the extent to which the bottom sediments of water bodies (artificial lakes and ponds) in the Silesian Upland in southern Poland are contaminated with Cd; an attempt was also made to determine the factors that condition spatial differences in the concentration of this element between individual water bodies in the region.

Materials and methods

Measurements of the Cd content in bottom sediments were carried out in 35 water bodies in southern Poland in 2011 and 2012. Depending on the surface area and morphometric characteristics, from two to nine samples representative in terms of sediment thickness were collected in each water body. Cadmium concentrations were determined for 92 0.25 g aliquots using the TD-ICP method.

Results and discussion

Cadmium content in all samples (0.7–580.0 mg kg?1) was higher than the natural range of concentrations for this element in the Earth’s crust (0.1–0.3 mg kg?1) and the geochemical background for Poland (0.5 mg kg?1) and, with a few exceptions, was also higher than the preindustrial concentration (1.0 mg kg?1) and the regional geochemical background (2.5 mg kg?1). Adopting natural Cd concentrations in the Earth’s crust (0.1–0.3 mg kg?1) as the baseline for the geoaccumulation index (Igeo), the sediments examined can be classified as extremely and heavily contaminated (and moderately contaminated in a small number of cases). The assessment of sediment quality based on Igeo, with the regional geochemical background (2.5 mg kg?1) adopted as the baseline, results in non-contaminated and moderately contaminated sediments being dominant with a far smaller number of heavily and extremely contaminated ones.

Conclusions

In the case of several water bodies, Cd concentrations were at record levels that have not been found anywhere else in the world. On the basis of the Igeo, sediments of varying quality were found—from virtually uncontaminated to extremely contaminated. The Igeo index as an indicator of the quality of bottom sediments is a measure that requires careful interpretation, especially when different concentration levels regarded as natural are used for determining its value.
  相似文献   
992.
Sugar beet (Beta vulgaris cv. Loretta) and rape (Brassica napus cv. Licolly) plants were exposed under equaldose conditions in closed fumigation chambers under twodifferent ozone (O3) pattern: Var130 (17:00–09:00 h: 40 μg O3 m-3; 09:00–17:00 h: 130μgO3 m-3) and Var220 (16:00-12:00 h: 40 μgO3 m-3; 12:00–16:00 h: 220μg O3 m-3).Control plants were exposed under carbon filtered airconditions (ozone free, CF-control). Sugar beet plants wereexposed four weeks each during 6-leaf-stage and lateralgrowth respectively. Rape plants were exposed for 14 daysduring flowering (f) or as young plants (y). In between andafter the end of exposure, plants were kept in carbonfiltered air (CF; < 10 μg O3 m-3). With respect to sucrose and chlorophyll content of leaves andseed weight, rape plants were most sensitive duringflowering. Under equal dose conditions, the most pronouncedeffects on chlorophyll and sucrose content of leaves as wellas fresh weight of taproots (CF: 100%; Var130: 97%;Var220: 83%) and of rape seeds (CF: 100%; y:Var130: 122%; Var220: 99%; f: Var130: 84%;Var220: 78%) were detected after exposure under shorttime high ozone peak conditions (Var220). Howeverglucose content in taproots (CF: 100%; Var130: 43%;Var220: 79%) and fatty acid content in rape seeds wasaffected most after exposure to moderate ozone peaks(Var130). Var130-plants seem to recover better fromozone stress than Var220-plants, but glucose content oftaproots and fatty acid content of rape seeds indicate long-lastingeffects especially in Var130-plants.Although experiments were conducted in a closed chambersystem it can be concluded, that current ozone concentrationscan induce adverse effects on these crops.  相似文献   
993.

Purpose

The aim of this study was to evaluate the role of phosphine in the mobilization of phosphorus in the rhizosphere soil of rice seedlings and to determine the relative efficiency of phosphine in plant P acquisition.

Materials and methods

An indoor simulation experiment was conducted and the matrix-bound phosphine (MBP), phosphorus fractions, and phosphatase activity in the rhizosphere soil samples from rice cultivation, biomass, the plant P, and the root system activity were measured under different phosphine concentrations (0, 1.4, 4.2, and 7.0 mg m?3) for a period of 30 days.

Results and discussion

The results indicated that phosphine treatments enhanced MBP, inorganic P (resin–Pi, NaHCO3–Pi, and NaOH–Pi), and phosphatase activity, as well as the root system activity, and the content of P in the rice seedlings was stimulated with increasing phosphine concentrations. However, organic P (NaHCO3–Po and NaOH–Po) accumulation occurred in the rhizosphere of the rice seedlings. In addition, the content of organic P in the soil samples decreased with increased phosphine concentration.

Conclusions

Therefore, relatively high concentrations of phosphine in paddy field could have a positive impact on the effectiveness of phosphorus in rice plants via influencing the rhizosphere properties.
  相似文献   
994.
An important environmental and regulatory issue is the protection of human health from potential adverse effects of cumulative exposure to multiple chemicals. Earlier literature suggested restricting inference to specific fixed-ratio rays of interest. Based on appropriate definitions of additivity, single chemical data are used to predict the relationship among the chemicals under the zero-interaction case. Parametric comparisons between the additivity model and the model fit along the fixed-ratio ray(s) are used to detect departure from additivity. Collection of data along reduced fixed-ratio rays, where subsets of chemicals of interest are removed from the mixture and the remaining compounds are at the same relative ratios as considered in the full ray, allow researchers to make inference about the effect of the removed chemicals. Methods for fitting simultaneous confidence bands about the difference between the best fitting model and the model predicted under additivity are developed to identify regions along the rays where significant interactions occur. This general approach is termed the “single chemicals required” (SCR) method of analysis. A second approach, termed “single chemicals not required” (SCNR) method of analysis, is based on underlying assumptions about the parameterization of the response surface. Under general assumptions, polynomial terms for models fit along fixed-ratio rays are associated with interaction terms. Consideration is given to the case where only data along the mixture rays are available. Tests of hypotheses, which consider interactions due to subsets of chemicals, are also developed.  相似文献   
995.

Purpose

As a useful comprehensive index for reflecting nutrient cycling in soils, nitrogen (N) and phosphorus (P) stoichiometry is subject to influences of many external environmental and biological factors. Studies on such influences were limited, and the influential mechanism remains unclear. The purpose of this research is to investigate soil N and P stoichiometric variations and analyze “fertile island” effects of Tamarix chinensis Lour. (T. chinensis) in the coastal wetland of Laizhou Bay in China.

Materials and methods

Soil samples beneath clusters and communities of T. chinensis were collected respectively in July 2012. Amounts of ammonium, nitrate, and available phosphorus in the soil samples were measured through the corresponding standard methods for material measuring.

Results and discussion

In general, there were significant vertical variations in soil N and P stoichiometry beneath clusters and communities of T. chinensis. A downtrend was observed for N and P contents with the increase in soil depth. On the contrary, the N/P ratio revealed a trend of going up first and then dropping off along with the increase of the soil depth. Comparatively, the horizontal variations in the soil N and P stoichiometry beneath a single cluster of T. chinensis were greater in the topsoil than those in the subsoil. The N and P contents gradually decreased from the canopy center to the outside. On the contrary, an opposite trend was found for the N/P ratio. For the horizontal variations beneath T. chinensis communities, there were no significant differences for either N and P contents or N/P ratios.

Conclusions

Similar to the ecosystems in arid and semi-arid areas, vegetations in many semi-humid areas could also form fertile islands and exert significant influences on the soil nutrient cycle. The formation of fertile islands beneath a single cluster of T. chinensis could have significant influence on soil N and P stoichiometry. Under the influence of fertile islands beneath T. chinensis, the limiting element of the biogeochemical processes in the coastal wetland of Laizhou Bay might change from N to P. However, the influences of fertile island effects on soil N and P stoichiometry beneath T. chinensis communities were relatively small, illustrating that the influences of fertile island effects was not significant at the community level. Thus, the impacts of environmental factors on soil N and P stoichiometry might be greater than that of the fertile island effects in the wetland on a larger scale.
  相似文献   
996.

Purpose

The main objectives of the study were to (1) develop a one-step facile procedure for synthesizing a new chemical amendment agent with three chelating groups for solidifying multiple heavy metals, called sixthio guanidine acid (SGA), using guanidine hydrochloride and carbon disulfide as raw reactants and (2) assess its biodegradability, solidification effectiveness, and leachability in remedying soils contaminated with multiple heavy metals of various concentrations compared with other traditional amendment agents.

Materials and methods

Polluted soil samples were collected near a metalliferous mining site of Qixiashan in the southeast of Nanjing, China. Their concentrations were determined at 22.15–320 mg kg?1 for As, 3.30–29.31 mg kg?1 for Cd, 115.66–158.65 mg kg?1 for Ni, 165.04–1677.06 mg kg?1 for Pb, and 355.6–2426.91 mg kg?1 for Zn. Biodegradability of SGA was assessed in accordance with GB/T 21831-2008 and OECD-301D. Total concentration of heavy metals was determined according to ISO11466:1995. A modified three-step sequential Community Bureau of Reference (BCR) extraction procedure was used to examine speciation of heavy metals in the soil sample, and concentrations of heavy metals were measured by using inductively coupling plasma optical emission spectrometry (ICP-OES). Leachate extraction tests were carried out before and after the soil sample was solidified with different amendments in accordance with HJ/T 557-2009.

Results and discussion

It is found that the optimal conditions for SGA synthesis are a molar ratio of 4:1, a reaction temperature of 40 °C, and a reaction time of 2 h. Under such conditions, SGA yield is achieved as high as 91.5 %. The bioavailability and mobility of As, Cd, Ni, Pb, and Zn in highly contaminated soils can be reduced via using SGA. Our results indicate that SGA is nonbiodegradative and much more effective than other traditional chemical amendment agents in that it is highly effective in comprehensively solidifying As, Cd, Ni, and Pb.

Conclusions

SGA has the potential for comprehensive in situ remediation of soils contaminated with several heavy metal elements of various concentration levels, and such findings may be used as a guide to design new chemical amendment agents for rehabilitating soils contaminated with heavy metals.
  相似文献   
997.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   
998.

Purpose

Developing routine methods that accurately predict soil nitrogen (N) mineralization is essential for fertilization recommendation; thus, chemical soil testing has received worldwide attention. However, the optimal chemical soil test for predicting soil N mineralization is region specific. This study aimed to determine suitable chemical soil tests for predicting N mineralization in paddy soils of the Dongting Lake region, China.

Materials and methods

Composite surface samples (0–20 cm) of soils (n?=?30) with diverse inherent properties were collected from representative paddy fields across the region. The benchmark indices for soil N mineralization were the net mineralization rate of soil N in a 112-day anaerobic incubation under waterlogged conditions (NMRN112) and N mineralization potential (N o ) estimated using a modified double exponential model. Laboratory-based measurements of soil labile organic N (SLON) were conducted using chemical fractionation methods including 0.01 M NaHCO3 extraction, hot 2 M KCl hydrolysis, phosphate-borate (PB) buffer hydrolysis, acidic KMnO4 oxidation, and alkaline KMnO4 oxidation. These were compared with the benchmark indices to assess their suitability for use as indicators for N mineralization.

Results and discussion

Acidic KMnO4-oxidative organic N (acidic KMnO4-N) and PB buffer-hydrolysable organic N (PBHYDR-N) correlated strongly with NMRN112 and N o (r?=?0.825–0.884, P?<?0.001, n?=?30). Grouping of soils based on soil texture generally provided no improvement in the relationships of chemical soil tests with NMRN112 and N o . Multiple stepwise regression analysis indicated that combining acidic KMnO4-N and PBHYDR-N yielded the best prediction of soil N mineralization, explaining 86.1 and 85.5 % of the variation in NMRN112 and N o , respectively, of the 30 tested paddy soils.

Conclusions

The results of acidic KMnO4-N and PBHYDR-N as indicators for soil N mineralization were promising, and the operations of acidic KMnO4 oxidation and PB buffer hydrolysis procedures are simple and cost-effective. Therefore, a combination of acidic KMnO4-N and PBHYDR-N shows promise in predicting N mineralization in paddy soils of the Dongting Lake region. However, further calibration through field studies is required and the chemical characteristics of acidic KMnO4-N and PBHYDR-N needs to be further clarified.
  相似文献   
999.
The identification of quantitative trait loci (QTL) can be viewed as a subset selection problem. In a simulation study the least absolute selection and shrinkage operator (LASSO) is shown to be a useful and powerful tool for QTL identification. LASSO effects are embedded into a mixed model allowing simultaneous modeling of genetic and experimental effects. This provides the flexibility to model the experiment in conjunction with the power of LASSO QTL identification. Estimation is performed using an approximation to the restricted likelihood and modified Gaussian elimination. The extended mixed model is used to analyze a cattle gene mapping dataset.  相似文献   
1000.

Purpose

The El Granero reservoir is the last reservoir of the Rio Conchos before it joins the Rio Grande at the Mexico–USA border. This reservoir, together with the San Marcos reservoir, is located in the arid region of Chihuahua, Mexico. High, naturally occurring radioactivity levels, as well as high arsenic (As) concentrations, have been found in both reservoirs. The main goal of this research was to establish the spatial and temporal distribution of trace and radioactive elements in surface sediments and cores collected from these reservoirs.

Materials and methods

Sediment cores were dated using 210Pb and 137Cs measurements and applying the constant rate of supply (CRS) model. Major, trace, and radioactive elements were determined in surface samples and three sediment cores. Radioactive elements were determined by both alpha and gamma spectrometry. Major and trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) using the EPA 3051a method. Enrichment factors (EF), contamination factors (CF), and pollution load indexes (PLI) were calculated in order to identify the human impact in both reservoirs, whereas the chemical index weathering (CIW) was used to assess differences in the degree of weathering.

Results and discussion

High uranium (U) enrichment (EFs?=?24.9–54.7) was observed in core layers at the San Marcos reservoir, while in surface sediments, this enrichment was lower. The high variability of lead (Pb) and As in sediment cores from the Granero reservoir was attributed to human influence. Arsenic and Pb enrichment differences between entry and exit sediment cores were explained by the filtering capabilities of the elongated shape, the topography, and the presence of plants on the reservoir’s bed. The highest PLI was found at the entrance core of the Granero reservoir.

Conclusions

The natural element concentration levels of As, Pb, and U were established at the Granero reservoir. High EFs for As and Pb suggest an anthropogenic origin of these pollutants at specific time intervals. High U concentrations in the San Marcos area are explained as naturally occurring. The concentrations of As in most of the studied sediments could pose a risk to human health by As ingestion, since they are above the probable effect level (PEL).
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号