首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   17篇
林业   101篇
农学   4篇
基础科学   1篇
  145篇
综合类   49篇
农作物   15篇
水产渔业   10篇
畜牧兽医   130篇
园艺   19篇
植物保护   33篇
  2023年   12篇
  2022年   9篇
  2021年   12篇
  2020年   21篇
  2019年   20篇
  2018年   18篇
  2017年   16篇
  2016年   19篇
  2015年   9篇
  2014年   18篇
  2013年   17篇
  2012年   38篇
  2011年   40篇
  2010年   28篇
  2009年   28篇
  2008年   34篇
  2007年   21篇
  2006年   30篇
  2005年   20篇
  2004年   20篇
  2003年   10篇
  2002年   16篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1981年   1篇
  1969年   1篇
  1968年   1篇
  1958年   1篇
  1941年   2篇
  1940年   1篇
  1939年   7篇
  1938年   3篇
  1937年   5篇
排序方式: 共有507条查询结果,搜索用时 31 毫秒
81.
To assess the impact of silver nanoparticles (SNP) on soil microbial biomass, microbial activity, and enzyme activities, a medium‐term experiment over four months was performed in which soil was applied with increasing SNP‐application rates compared to a control. The treatments included a single SNP‐application dose analogous to 3.2 (SNP‐1), 32 (SNP‐10), and 320 (SNP‐100) μg Ag (kg dry soil)–1 and a control without SNP application, respectively. At the end of the experiment, clear evidence was found that microbial biomass was significantly decreased with increasing SNP‐application rate, while basal respiration was increased in this direction. In addition, metabolic quotients were increased in the SNP treatments compared to the control. This is at least circumstantial evidence that the efficiency of substrate use was lowered in SNP‐treated soils. Another suggestion might be that after four months microbial‐community composition was changed due to SNP. No treatment effects were found for microbial biomass N, fluorimetric enzymes, and the abiotic soil parameters pH and soil organic C.  相似文献   
82.
Bees and wasps provide important ecosystem services such as pollination and biocontrol in crop-dominated landscapes, but surprisingly little information is available on hymenopteran communities in temperate forest ecosystems. Species richness and abundance of bees and wasps can be hypothesised to increase with plant diversity, structural complexity, and availability of food and nesting resources. By experimentally exposing standardised nesting sites, we examined abundance and species richness of cavity-nesting bees (pollinators), wasps (predators) and their associated parasitoids across a tree diversity gradient in a temperate deciduous forest habitat. In addition, spatial distribution of individuals and species across forest strata (canopy vs. understory) was tested. Abundance and species richness was high for predatory wasps, but generally low for pollinators. Species-rich forest stands supported increased abundance, but not species richness, of pollinators and predatory wasps, and also increased abundance and species richness of natural enemies. In addition, the forests showed a distinct spatial stratification in that abundance of bees, wasps and parasitoids as well as parasitism rates were higher in the canopy than understory. We conclude that particularly the canopy in temperate forest stands can serve as an important habitat for predatory wasp species and natural enemies, but not bee pollinators. Enhanced tree diversity was related to increased hymenopteran abundance, which is likely to be linked to an increase in nesting and food resources in mixed forest stands.  相似文献   
83.
Although the effect of forest management on lichens in temperate forests has been widely examined, little is known about the influence of management-related factors on their biodiversity relative to factors that cannot be altered by management. Here we determined whether forest structure or climate determines lichen diversity in the Bavarian Forest National Park in southeastern Germany, taking spatial variables into account. We investigated 517 single tree stems along 4 transects in 113 pre-stratified plots (8 m in diameter) in this montane forest. We grouped environmental variables into three sets: climate (macroclimate, non-manageable), forest structure (manageable), and space. The explanatory powers of these sets of variables for lichen diversity were compared using variance partitioning for the lichen community, species density, and threatened species density. The relationships of single characteristics of forest structure with lichen species diversity were analyzed using generalized linear models (GLM). Lichen diversity was better explained by stand structures than by climate. Spatial effects influenced the number of species per plot. Among the structural features, the availability of dead wood and sycamore maple as well as forest continuity were most important for the enhancement of lichen diversity. Open canopy structures affected the total diversity positively. Although the availability of large trees was not an influential factor in the GLM at the plot level, high diversity levels were generally associated with large stem diameters at the level of single stems. We provide recommendations for sustainable forest-management practices that aim at specifically enhancing lichen diversity in temperate areas experiencing low levels of air pollution.  相似文献   
84.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   
85.
86.
  • ? Understanding the effects of tree species diversity on biomass and production of forests is fundamental for carbon sequestration strategies, particularly in the perspective of the current climate change. However, the diversity-productivity relationship in old-growth forests is not well understood.
  • ? We quantified biomass and above-ground production in nine forest stands with increasing tree species diversity from monocultures of beech to stands consisting of up to five deciduous tree species (Fagus sylvatica, Fraxinus excelsior, Tilia spp., Carpinus betulus, Acer spp.) to examine (a) if mixed stands are more productive than monospecific stands, (b) how tree species differ in the productivity of stem wood, leaves and fruits, and (c) if beech productivity increases with tree diversity due to lower intraspecific competition and complementary resource use.
  • ? Total above-ground biomass and wood production decreased with increasing tree species diversity. In Fagus and Fraxinus, the basal area-related wood productivity exceeded those of the co-occurring tree species, while Tilia had the highest leaf productivity. Fagus trees showed no elevated production per basal area in the mixed stands.
  • ? We found no evidence of complementary resource use associated with biomass production. We conclude that above-ground productivity of old-growth temperate deciduous forests depend more on tree species-specific traits than on tree diversity itself.
  •   相似文献   
    87.
    88.
    A laboratory experiment was performed to assess the impact of ecologically different earthworm species on soil water characteristics, such as soil tension, water content, and water infiltration rate. Three earthworm species (Lumbricus rubellus, Aporrectodea caliginosa, Lumbricus terrestris) were exposed in soil columns (diameter 30 cm, height 50 cm) for 100 days with a total fresh earthworm biomass of 22.7 ± 0.4 g per column, each in duplicate. Each column was equipped with tensiometers at 10 and 40 cm and FD-probes at 10 cm depth, to continuously measure the temporal development of soil tension and soil moisture. Additionally, 30 g of sieved and rewetted horse manure was placed on the soil surface as a food source. Precipitation events (10 mm) were simulated at day 28 and day 64. At the end of the experiment the water infiltration rate and the runoff at 55 cm depth were determined.The results showed considerable evidence, that ecologically different earthworms modify soil water characteristics in different ways. The anecic L. terrestris and the endogeic A. caliginosa showed the tendency to enhance the drying of the topsoil and subsoil. Their intensive and deep burrowing activity might enhance the exchange of water vapor due to a better aeration in soil. In contrast, the epigeic L. rubellus tended to enhance the storage of soil moisture in the topsoil, which might be linked to lower rates of litter loss from soil surface and thus a thicker litter layer remaining. A. caliginosa led to considerable higher water infiltration rates and faster water discharges in the subsoil, relative to the other species, probably due to a high soil dwelling activity.  相似文献   
    89.
    Little is known about the ecology of soil inoculants used for pathogen biocontrol, biofertilization and bioremediation under field conditions. We investigated the persistence and the physiological states of soil-inoculated Pseudomonas protegens (previously Pseudomonas fluorescens) CHA0 (108 CFU g?1 surface soil) in different soil microbial habitats in a planted ley (Medicago sativa L.) and an uncovered field plot. At 72 days, colony counts of the inoculant were low in surface soil (uncovered plot) and earthworm guts (ley plot), whereas soil above the plow pan (uncovered plot), and the rhizosphere and worm burrows present until 1.2 m depth (ley plot) were survival hot spots (105–106 CFU g?1 soil). Interestingly, strain CHA0 was also detected in the subsoil of both plots, at 102–105 CFU g?1 soil between 1.8 and 2 m depth. However, non-cultured CHA0 cells were also evidenced based on immunofluorescence microscopy. Kogure's direct viable counts of nutrient-responsive cells showed that many more CHA0 cells were in a viable but non-culturable (VBNC) or a non-responsive (dormant) state than in a culturable state, and the proportion of cells in those non-cultured states depended on soil microbial habitat. At the most, cells in a VBNC state amounted to 34% (above the plow pan) and those in a dormant state to 89% (in bulk soil between 0.6 and 2 m) of all CHA0 cells. The results indicate that field-released Pseudomonas inoculants may persist at high cell numbers, even in deeper soil layers, and display a combination of different physiological states whose prevalence fluctuates according to soil microbial habitats.  相似文献   
    90.
    Upland soils are the most important terrestrial sink for the greenhouse gas CH4. The oxidation of CH4 is highly influenced by reactive N which is increasingly added to many ecosystems by atmospheric deposition and thereby also alters the labile C pool in the soils. The interacting effects of soil N availability and the labile C pool on CH4 oxidation are not well understood. We conducted a laboratory experiment with soil columns consisting of homogenised topsoil material from a temperate broad-leaved forest to study the net CH4 flux under the combined or isolated addition of NO 3 ? and glucose as a labile C source. Addition of NO 3 ? and glucose reduced the net CH4 uptake of the soil by 86% and 83%, respectively. The combined addition of both agents led to a nearly complete inhibition of CH4 uptake (reduction by 99.4%). Our study demonstrates a close link between the availability of C and N and the rate of CH4 oxidation in temperate forest soils. Continued deposition of NO 3 ? has the potential to reduce the sink strength of temperate forest soils for CH4.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号