首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   7篇
林业   17篇
  1篇
农作物   1篇
水产渔业   2篇
畜牧兽医   10篇
植物保护   12篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.

Asobara japonica (Hymenoptera: Braconidae), Ganaspis brasiliensis and Leptopilina japonica (Hymenoptera: Figitidae) are Asian larval parasitoids of spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae). This study evaluated these parasitoids’ capacity to attack and develop from 24 non-target drosophilid species. Results showed that all three parasitoids were able to parasitize host larvae of multiple non-target species in artificial diet; A. japonica developed from 19 tested host species, regardless of the phylogenetic position of the host species, L. japonica developed from 11 tested species; and G. brasiliensis developed from only four of the exposed species. Success rate of parasitism (i.e., the probability that an adult wasp successfully emerged from a parasitized host) by the two figitid parasitoids was low in hosts other than the three species in the melanogaster group (D. melanogaster, D. simulans, and D. suzukii). The failure of the figitids to develop in most of the tested host species appears to correspond with more frequent encapsulation of the parasitoids by the hosts. The results indicate that G. brasiliensis is the most host specific to D. suzukii, L. japonica attacks mainly species in the melanogaster group and A. japonica is a generalist, at least physiologically. Overall, the developmental time of the parasitoids increased with the host’s developmental time. The body size of female A. japonica (as a model species) was positively related to host size, and mature egg load of female wasps increased with female body size. We discuss the use of these parasitoids for classical biological control of D. suzukii.

  相似文献   
22.
Journal of Pest Science - Formula, Equation 2 and the table 3 are published incorrectly in the original publication of the article. The correct version of the article is given below  相似文献   
23.
The distribution and abundance of species that cause economic loss (i.e., pests) in crops, forests or livestock depends on many biotic and abiotic factors that are thought difficult to separate and quantify on geographical and temporal scales. However, the weather‐driven biology and dynamics of such species and of relevant interacting species in their food chain or web can be captured via mechanistic physiologically based demographic models (PBDMs). These models can be implemented in the context of a geographic information system (GIS) to predict the potential geographic distribution and relative abundance of pest species given observed or climate change scenarios of weather. PBDMs may include bottom‐up effects of the host on pest dynamics and, if appropriate, the top‐down action of natural enemies. When driven by weather, PBDMs predict the phenology, age structure and abundance dynamics at one or many locations enabling the distribution of the interacting species to be predicted across wide geographic areas. PBDMs are able to capture relevant ecosystem complexity within a modest number of measurable parameters because they use the same ecological models of analogous resource acquisition and allocation processes across all trophic levels. The use of these analogies makes parameter estimation easier as the underlying functions are known. This is a significant advantage in cases where the biological data available to build an evidence base for pest risk assessment is sparse.  相似文献   
24.
25.
26.
Spinosyn‐based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad‐based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. Copyright © 2012 Society of Chemical Industry  相似文献   
27.
28.
In this study, 120-l annular columns were used to cultivate Tetraselmis suecica outdoors. The mass transfer at different aeration rates and the influence of the harvest rate on productivity and biochemical composition were investigated. The potential of the system was evaluated by estimating productivity at full-scale. Two different arrangements to simulate a full-scale plant and determine the “overall areal productivity” (OAP) were experimented with. In August 2003, one experimental column (full-scale column) was placed between seven dummy columns. All the reactors were positioned at a distance of 0.8 m wall to wall and centred at the vertices of equilateral triangles. A second experimental column (isolated column) was placed in a separate area under full sunlight. In August 2004, the columns were placed side by side in an east-west oriented row at a distance of 0.24 m wall to wall.In the first experiment, the mean volumetric productivity of the full-scale column was not significantly lower than that achieved by the isolated column (0.46 against 0.49 g l− 1 day− 1) in spite of the shading by the dummy units. The average OAP and efficiency of conversion of visible solar radiation (PE) were 36.3 g m− 2 day− 1 and 9.4%, respectively. In the second experiment, the full-scale column attained a mean volumetric productivity of 0.42 g l− 1 day− 1. The OAP and the PE were 38.2 g m− 2 day− 1 and 9.3%, respectively.  相似文献   
29.
Infrared thermography was used to measure temperature differences of the corneal surface between nasal and temporal limbus regions and central cornea of normal dogs and dogs with keratoconjunctivitis sicca (KCS), in order to establish temperature values in normal canine eyes and in patients with decreased Schirmer tear tests (STT) values. Dogs investigated were all either patients seen at the Veterinary Teaching Hospital of Federal University of Paraná or normal dogs that belonged to the same institution. STT were performed in all eyes. A total of 40 control eyes (STT ≥15 mm/min) and 20 eyes with low STT values (STT ≤14 mm/min) were examined. The mean STT value for eyes with normal STT values was 22.9 ± 3.9 mm/min (mean ± standard deviation), and the mean STT value for eyes with low STT value was 7.2 ± 4.8 mm/min. The mean corneal temperature was significantly lower in eyes with low STT values than in control eyes (< 0.0001). The following significant correlations were found: (i) Schirmer and breakup time (BUT) (= 0.0001, = 0.5); (ii) STT values and corneal surface temperature (= 0.001, = 0.256); (iii) STT values and age (= 0.0001, = ?0.448); (iv) age and corneal surface temperature (= 0.0001, = ?0.281); and (v) BUT and corneal surface temperature (= 0.0001, = 0.36). Thermography is a method that can differentiate between eyes with normal and abnormal STT values. In the future, thermography might be incorporated as part of the ophthalmic examination and perhaps become a popular ancillary test for the diagnoses of ocular surface disorders.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号