排序方式: 共有90条查询结果,搜索用时 15 毫秒
32.
从阿拉尔地区某奶牛场随机采取20头奶牛乳样共70份,经LMT诊断液检测,阴性乳样29份占41.43;,阳性乳样41份占58.57;.在阳性乳样中,弱阳性乳样18份占43.90;、阳性乳样11份占26.83;、强阳性乳样12份占29.27;.取阳性乳样、强阳性乳样进行细菌的分离鉴定,得到7种细菌共168株,表皮葡萄球菌69株、金黄色葡萄球菌35株、大肠杆菌29株、停乳链球菌13株、乳房链球菌10株、克雷伯氏菌9株、蜡样芽孢杆菌3株.通过动物攻毒试验结果表明,分离出的7种细菌均具有一定的致病力. 相似文献
33.
34.
[目的]研究超高压下不同浓度Ca2+与Na+对甜菜果胶结构及流变性质的影响,为甜菜果胶在食品中的应用提供理论依据。[方法]甜菜果胶用浓度0.05 mol·L-1的Tris-HCl溶液溶解,添加不同浓度Ca2+(2、12和20mmol·L-1)和Na+(0.05、0.1和0.6 mol·L-1),配制成1%(w/v)甜菜果胶溶液后进行超高压处理,然后分别对甜菜果胶分子量、微观结构、黏度和动态粘弹性进行测定。[结果]与常压下相比,在450 MPa条件下处理不同时间(10、20、30和50 min)后,甜菜果胶在1 550 cm-1处均出现新的吸收峰,甜菜果胶溶液的屈服应力σ0显著增加,但不同超高压处理时间之间无显著差异。添加不同浓度Ca2+或Na+的甜菜果胶在450 MPa条件下处理30 min,其结构及流变性的变化有所不同。相对于未添加Ca2+或Na+的甜菜果胶,添加2 mmol·L-1 Ca2+离子使甜菜果胶溶液屈服应力σ0、储能模量G’和损耗模量G"均明显增加,当Ca2+浓度增加到12 mmol·L-1和20 mmol·L-1时,果胶的流变性质变化不显著;添加2 mmol·L-1 Ca2+使甜菜果胶分子发生明显的交联。果胶分子量由只高压处理的2.25×105 Da显著增加到6.07×105 Da,Ca2+的添加浓度增加到20 mmol·L-1,果胶的分子量变为5.99×105 Da,与添加2mmol·L-1 Ca2+时没有显著差异,其流变性质变化亦不显著。相对于未添加Ca2+或Na+的甜菜果胶,添加0.05 mol·L-1 Na+也使甜菜果胶的屈服应力σ0显著增加,并且随着Na+浓度的持续增加,果胶的屈服应力σ0显著增加;而只有当Na+浓度增加到0.6 mol·L-1时,甜菜果胶储能模量G’和损耗模量G"才发生明显增加。添加0.1 mmol·L-1 Na+的甜菜果胶,其果胶分子链相互交联成网状,果胶分子发生明显聚集,果胶分子量显著增加到11.95×105 Da;而当Na+浓度增加到0.6 mol·L-1时,果胶链呈棒状结构,果胶分子量显著降低到5.53×105 Da。[结论]超高压下Ca2+与Na+可能与甜菜果胶分子结合使其结构发生改变,进而影响甜菜果胶的结构及流变性质。 相似文献
35.
为对管道内气液两相流时关阀水锤工况进行模拟研究,对给水管网内部气液两相同流的流态进行简化后采用自编C++语言水锤分析软件,以安徽省某县经开区给水工程树状管网为例,先建立末端关阀水锤的水锤计算模型,再对不同组合的末端关阀水锤进行模拟和分析计算.计算结果表明,气液两相流时,若给水管道产生末端关阀水锤,则水锤波会向临近的主干管及其他连接的支干管扩散.管网末端阀门全关的极端不利工况时,相较于不含气,含气率为10%的工况导致的末端关阀水锤振幅更大;含气率为10%的极端不利工况时,相较于部分关阀,管网末端阀门同时全关所产生的关阀水锤振幅更大,其关阀水锤的升压超过4.5倍的稳态压力,因此末端关阀水锤对给水工程危害极大.“无频动消锤控流控位阀+箱式双向调压塔+普通排气阀+恒速缓冲排气阀”的水锤防护措施对末端关阀水锤预防效果良好. 相似文献
36.
武汉市土地利用变化碳排放及碳足迹分析 总被引:3,自引:0,他引:3
采用武汉市1996-2010年的土地利用变更数据、能源数据以及相关经济数据,通过构建碳排放、碳足迹模型,测算近15年来武汉市土地利用的碳排放量和碳足迹,并分析其碳排放量、碳足迹的变化及影响因素。结果表明,武汉市建设用地碳排放量占碳排放总量的98%以上,在1996-2010年处于逐年增加的状态,2010年已达到1996年的1.4倍;武汉市的总碳足迹和人均碳足迹也在逐年增加,碳赤字较为严重。碳排放总量的不断增加主要是由武汉市建设用地不断扩大以及经济增长方式和能源结构不合理造成。为此,武汉市不仅要控制建设用地的扩张,同时还应改变经济增长方式、调整能源消费结构。 相似文献
37.
38.
39.
水分对植物生长和栽培基质内水分蒸发和利用率具有重要影响。在联栋设施蔬菜大棚内,采用发酵床垫料基质进行不同水分用量下的小青菜槽式栽培试验。结果表明,水分供应量过高或过低均不能够获得理想的产量,最优供水量是最大持水量的63%~75%。最优水分供应量对应根系生物质量和叶面积也最高,但水分用量对株高影响不显著。最优水分供应量时,栽培基质每日自然蒸发(2.46%~4.56%)和水分利用效率(1.99%~6.71%)均处于中等水平。水分供应量过高时,自然蒸发和水分利用效率也较低,植物根系和地上部生物质量均较低。63%~75%最大持水量可以作为基质栽培生产上水分控制指标。 相似文献
40.