排序方式: 共有92条查询结果,搜索用时 281 毫秒
1.
2.
3.
机载AISA Eagle Ⅱ高光谱数据在温带 天然林树种分类中的应用 总被引:1,自引:0,他引:1
以内蒙古根河地区的温带天然林试验区为研究对象,采用支持向量机(SVM)方法,对经过大气校正后的机载AISA Eagle Ⅱ高光谱地表反射率影像分航带进行树种分类,将地面光谱测量与高光谱同平台的高分辨率航空相片结合,进行训练样本的选择,使用地面样地数据对分类结果进行验证。结果表明:利用AISA Eagle Ⅱ高光谱影像对温带天然林区分类的总体精度和kappa系数分别达到了96.71%和0.95;灌木分类精度最高,其制图精度和用户精度分别达到了98.07%和98.31%;落叶松和白桦的用户精度分别为98%和94%。 相似文献
4.
5.
基于ALOS PALSAR数据的森林蓄积量估测技术研究 总被引:3,自引:1,他引:3
以吉林省汪清林业局为研究区,基于ALOS PALSAR和森林资源二类清查固定样地数据,利用非线性回归方法建立了固定样地蓄积量与所对应的PALSAR像元后向散射系数之间的关系,结果表明,除杨树(Populus us-suriensis)等树种组外,PALSAR的HV后向散射系数与蓄积量呈良好的正相关关系,对多数树种而言,交叉极化方式(HV)后向散射系数与蓄积量的决定系数比同极化方式(HH)的略高。若以林场为单位统计,采用回归方法得到的估测结果与直接利用固定样地估测的结果相差很小。 相似文献
6.
目的: 探究将简单非迭代聚类超像素分割算法(SNIC)融合到基于多时相数据的树种分类问题中,并对比分析不同时相数据组合对分类结果的影响,实现更高效、更精准的优势树种识别。方法: 以内蒙古旺业甸林场为研究区,在Google Earth Engine(GEE)云计算平台上利用多时相Sentinel-2多光谱数据提取波段反射率特征和光谱指数特征,采用SNIC和支持向量机(SVM)机器学习分类方法,实现面向对象的优势树种识别,并分析不同时相数据组合对优势树种识别精度的影响。结果: 多时相数据组合的分类精度明显高于各季节单时相数据。对比不同多时相数据组合分类结果,春、秋2个季节时间序列组合数据的分类精度与多季节组合数据结果相近,总体精度分别为94.5%、95.0%和95.8%。结论: 基于多时相Sentinel-2影像和SNIC分割算法的面向对象分类方法能够快速、准确识别优势树种,多季节组合数据的分类结果最优,春、秋2个季节时间序列数据也能获得较好分类结果,总体精度与最优结果差距较小。 相似文献
7.
基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性 总被引:2,自引:0,他引:2
[目的]探索高分2号遥感数据与中亚热带天然林木本植物物种Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀性指数之间的关系,为森林经营管理和保护策略提供参考。[方法]提取高分2号多光谱数据的原始波段、植被指数、纹理特征和全色波段纹理特征,使用随机森林算法筛选变量并对3种多样性指数进行建模,设置不同纹理提取窗口来寻找最优窗口。[结果]基于随机森林算法的RFE冗余变量去除方法可从众多遥感变量中快速选择对模型精度具有显著贡献的少量变量。多光谱数据3×3窗口纹理特征、全色数据7×7窗口纹理特征和植被指数结合的特征集对3种多样性指数具有较好估测结果,其决定系数(R2)和均方根误差(RMSE)分别为0.47和0.300(Shannon-Wiener多样性指数)、0.53和0.042(Simpson多样性指数)、0.61和0.051(Pielou均匀性指数)。植被指数中类胡萝卜素反射率指数与3种多样性指数具有显著相关关系。[结论]高分2号遥感数据中的植被指数和纹理特征可有效估测研究区森林木本植物物种多样性。类胡萝卜素反射率指数可体现森林中类胡萝卜素相对于叶绿素的含量,在秋冬季节作为反映常绿树种和落叶树种分布的指数,对森林木本植物物种多样性估测具有最大贡献。使用星载遥感数据预测的多样性和均匀性指数分布可有效监测森林木本植物物种多样性变化。 相似文献
8.
荒漠化土地土壤有机质含量的实测光谱估测 总被引:6,自引:0,他引:6
在对2个荒漠化典型区土壤采样、化验分析和光谱测量的基础上,分析荒漠化土地土壤的反射光谱特征及土壤有机质的光谱敏感范围,构建多种土壤有机质含量高光谱估测模型。结果表明: 荒漠化土地土壤具独特的波浪型光谱曲线,其主要特点是在可见光和近红外的500~900 nm光谱范围存在一个明显的弓形突起区,其对提取土壤有机质信息有实际意义; 相关分析发现,在中心波长分别为600和830 nm的可见光和近红外光光谱范围分别存在1个有机质光谱敏感区; 土壤有机质含量高光谱估测模型验证结果表明,利用波长588 nm处的反射光谱对数lgR588和反射光谱倒数1/R588以及波长835 nm处的反射光谱倒数的导数(1/R835)'和反射光谱对数的导数(lgR835)'分别建立的模型,可以较好地估测荒漠化土地土壤有机质含量。 相似文献
9.
应用机载单基线极化干涉SAR(Pol-InSAR)数据,基于极化相干层析(PCT)技术提出了一种反演森林地上生物量的新方法。首先采用单基线PCT提取每个像元的森林相对反射率垂直分布,然后按林分统计得到森林平均相对反射率垂直分布;再次对森林平均相对反射率垂直分布进行高斯函数拟合,提取林分层析测量高;最后以通过样地调查统计得到的20个林分的地上生物量为参考数据,采用交叉验证方法建立和评价基于层析测量树高的地上生物量估测模型,并与基于经典三阶段反演的林分优势木平均树高估测地上生物量的方法进行对比。结果表明:基于层析测量高的反演模型决定系数(R2)为0.822,均方根误差(RMSE)为53.14 t ·hm-2,比基于经典三阶段反演算法的林分地上生物量估测方法具有更高的估测精度。该反演方法简单易行,能够有效提高森林地上生物量估测精度,在该研究区未出现信号饱和现象。 相似文献
10.
干涉测量土地利用影像分类决策树法森林识别研究 总被引:3,自引:0,他引:3
利用ERS-1和ERS-2 SAR串行轨道数据经干涉测量处理生成的干涉测量土地利用影像对森林识别方法进行初步研究。内容包括基于目标识别选择合成干涉测量土地利用影像处理方法、应用斜分类器(OCI)生成分类决策树以及在自主开发的软件中调整分类决策树、对分类结果进行像元级别上的精度检验和误差分析等。结果表明:ERS-1和ERS-2 SAR串行轨道数据经干涉测量处理,利用其强度影像和相干影像可以合成多种干涉测量土地利用影像;其中最小值影像和 标准差影像较之于其它强度影像和变化影像更有利于区分水体和森林;由于OCI生成决策树的算法决定了在分类处理中没有不可分类别的存在,所以在初期选择分类类别时,要尽可能多的覆盖原始影像的数值区间;选择的各类别样本数据要尽可能的“纯”,以减少类别间数值区间的重叠,从而减少误分类情况。 相似文献