首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1298篇
  免费   81篇
  国内免费   113篇
林业   74篇
农学   86篇
基础科学   29篇
  529篇
综合类   478篇
农作物   46篇
水产渔业   68篇
畜牧兽医   121篇
园艺   13篇
植物保护   48篇
  2024年   13篇
  2023年   31篇
  2022年   54篇
  2021年   49篇
  2020年   44篇
  2019年   50篇
  2018年   53篇
  2017年   64篇
  2016年   59篇
  2015年   60篇
  2014年   66篇
  2013年   95篇
  2012年   129篇
  2011年   97篇
  2010年   74篇
  2009年   68篇
  2008年   68篇
  2007年   67篇
  2006年   56篇
  2005年   58篇
  2004年   40篇
  2003年   24篇
  2002年   24篇
  2001年   27篇
  2000年   17篇
  1999年   15篇
  1998年   17篇
  1997年   11篇
  1996年   9篇
  1995年   14篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
排序方式: 共有1492条查询结果,搜索用时 15 毫秒
1.
饲料中所含的无机元素对动物生长具有重要意义。在饲料中过量添加无机元素会导致环境污染问题,也会通过食物链最终危害消费者的身体健康,因此,对饲料产品中的无机元素进行检测和动态监控尤为重要。综述了近年来饲料中无机元素含量检测主要应用的前处理方法及其含量检测技术,分析了不同前处理方法和含量检测技术的优点和不足,以期为饲料中无机元素分析方法的科学、合理应用提供参考。  相似文献   
2.
Abstract  To evaluate the suitability of angling groundbaits as a fish feed and the potential for nutrient loss, the macronutrient digestibility of four groundbaits was investigated in carp, Cyprinus carpio L., using a sieving method of faeces collection and chromic oxide. Apparent digestibility coefficients (ADCs) of protein and lipids were >80% for all angling baits. ADCs of nitrogen-free extracts and phosphorus (P) differed significantly between the test diets, probably because of divergent feed compositions and ingredient treatments. The generally high digestibility estimates indicated that fish feeding on angling groundbait will benefit from this food source. The differences in nutrient digestibility suggested that type of groundbait and ingredient used will have a major effect on potential eutrophication and fish production caused by groundbaiting. The principle of groundbaits to protect the environment should be to minimise the P-content of the groundaits and maximising P-digestibility and P-retention efficiency.  相似文献   
3.
选择42日龄皖系粗毛兔幼兔42只,根据体重、性别,随机分成3组,分别饲喂含1‰、2‰生沛素日粮和对照组日粮.结果表明,添加1‰、2‰生沛素组产毛量比对照组分别提高17.5%(P<0.01)和19.1%(P<0.01);增重提高11.2%(P<0.05)和12.5%(P<0.05);每只兔一次产毛的经济效益比对照组分别提高2.96元和1.13元.另外,添加生沛素的试验组兔毛品质也比对照组有所提高和改善.  相似文献   
4.
反刍动物对不同方法加工处理青粗饲料的利用效果   总被引:5,自引:0,他引:5  
总结了农作物秸秆、青贮饲料和苜蓿的国内外加工处理方法及反刍动物对其的利用效果。  相似文献   
5.
利用土工合成材料综合测定仪(直剪仪),以水分含量14.57%的糙米为样品,测定了在不同的法向压应力、不同的剪切速率下糙米的剪切应力并计算出内摩擦角。实验结果表明:糙米的剪切应力随着法向压应力(25kPa~100kPa)的增大而增大;剪切速率(1.33mm/min~2.67mm/min)较低时糙米的内摩擦角随着法向压应力的增大而减小;随着剪切速率(1.33mm/min~5.20mm/min)的增大,糙米的内摩擦角减小。  相似文献   
6.
Agricultural soils are important sources of greenhouse gases (GHGs). Soil properties and environmental factors have complex interactions which influence the dynamics of these GHG fluxes. Four arable and five grassland soils which represent the range of soil textures and climatic conditions of the main agricultural areas in the UK were incubated at two different moisture contents (50 or 80% water holding capacity) and with or without inorganic fertiliser application (70 kg N ha−1 ammonium nitrate) over 22 days. Emissions of N2O, CO2 and CH4 were measured twice per week by headspace gas sampling, and cumulative fluxes were calculated. Multiple regression modelling was carried out to determine which factors (soil mineral N, organic carbon and total nitrogen contents, C:N ratios, clay contents and pH) that best explained the variation in GHG fluxes. Clay, mineral N and soil C contents were found to be the most important explanatory variables controlling GHG fluxes in this study. However, none of the measured variables explained a significant amount of variation in CO2 fluxes from the arable soils. The results were generally consistent with previously published work. However, N2O emissions from the two Scottish soils were substantially more sensitive to inorganic N fertiliser application at 80% water holding capacity than the other soils, with the N2O emissions being up to 107 times higher than the other studied soils.  相似文献   
7.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
8.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   
9.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   
10.
The last decade has led to major shifts in opinions on the use of hydroxyethyl starch (HES) solutions in fluid therapy, specifically in human patients with sepsis. The majority of evidence documenting adverse effects of HES solutions on coagulation and renal health come from studies in people. However, these findings have led to investigation into the safety of HES solutions in veterinary species. While there are now studies investigating the effects of HES solutions on coagulation and renal health in dogs, cats and horses, information regarding long-term follow-up, clinical significance of these changes and use of these solutions in critically ill animals is still lacking. The information presented here serves to review the physiology of oncotic pressure and the rationale behind colloid use, specifically HES solutions. Additionally, the foundation of arguments against the use of HES and the available literature regarding HES use in animals will be summarised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号