排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
2.
不同耕作条件下豆麦双序列轮作农田土壤温室气体的排放及影响因素研究 总被引:2,自引:0,他引:2
为了研究耕作措施对双序列轮作农田土壤温室气体的排放及影响, 采用CO2分析仪、静态箱 气相色谱法在陇中黄土高原半干旱区对传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作+秸秆还田4种耕作措施下豆麦双序列轮作农田土壤温室气体(CO2、N2O和CH4)的排放及影响因素进行了连续测定和分析。结果表明: 测定期内4种耕作措施下农田土壤均表现为CO2源、N2O源和CH4净吸收汇; 除传统耕作不覆盖措施, 其他3种耕作措施不同程度地减少了2种轮作序列土壤的N2O排放通量, 并显著增加了土壤对CH4的吸收。CO2和N2O的排放通量分别与地表、地下5 cm处、地下10 cm处的土壤温度呈极显著和显著正相关关系, 相关系数分别为0.92**和0.89**、0.95**和0.91**、0.77*和0.62*; 而CH4吸收通量与不同地层的温度之间无明显的相关关系; CO2和CH4的通量与0~5 cm、5~10 cm的土壤含水量均呈显著正相关关系, 相关系数分别为0.69*和0.72*、0.77*和0.64*, 而与10~30 cm土壤含水量无明显相关关系; N2O排放通量与各层次的土壤含水量之间均呈不显著负相关关系。对2种轮作序列各处理下土壤中排放的3种温室气体的增温潜势计算综合得出: 4种耕作措施中, 免耕不覆盖处理可相对减少土壤温室气体的排放量, 进而降低温室效应。 相似文献
3.
4.
阐明长期有机物料施肥下土壤CO2排放特征及其影响机制以及碳库管理指数对黄土高原旱作农业区固碳减排及施肥模式选择的影响尤为重要。基于2012年设置在陇中黄土高原旱作区的长期定位试验,通过不施肥(CK)、氮肥(NF)、有机肥(OM)、秸秆(ST)、有机肥结合无机肥(OMNF)5个处理,测定并计算了2018年不同施肥措施下全年土壤CO2排放、作物碳排放效率和碳库管理指数的变化,并运用结构方程模型分析了0~30 cm土壤温度、水分、微生物量碳氮、易氧化有机碳、蔗糖酶、脲酶与土壤CO2排放速率的关系。结果表明:1)与不施肥相比,秸秆、有机结合无机肥和有机肥处理使生育期土壤CO2排放平均速率提高了42.72%、30.82%和29.79%,秸秆、有机肥处理分别使生育期土壤CO2排放量显著提高36.35%、32.45%(P<0.05),有机结合无机肥处理使碳排放效率显著降低41.10%(P<0.05);2)有机物料处理均能显著提高0~5 cm土层易氧化有机碳、微生物量碳氮、蔗糖酶活性和碳库管理指数,相比不施肥和氮肥处理,有机结合无机肥处理分别使0~30 cm土壤碳库管理指数提高127.41%,99.33%(P<0.05);3)结构方程模型表明,环境因子对土壤CO2排放速率的总解释度为53%,对土壤CO2排放速率总效应较大的影响因素包括土壤温度(2.36)、微生物量碳(1.59)和土壤水分(1.18),且均间接地影响着土壤CO2排放速率,土壤温度促进了微生物量碳和蔗糖酶活性的提高,微生物量碳促进了微生物量氮和易氧化有机碳的增加。综合来看,有机结合无机肥处理可以提升土壤碳库管理指数,保持微生物活性,增加作物产量,降低土壤碳排放效率,是陇中黄土高原旱作农业区比较适宜的农田培肥措施。 相似文献
5.
为探究添加生物质炭对Cd胁迫下生菜Cd吸收累积的影响,以生菜为试验材料,通过盆栽试验,在添加外源镉含量为3 mg/kg的土壤中分别添加0%、1%、2%、3%的生物质炭,待生菜收获后,测得土壤pH、有机碳、生菜产量、生菜体内Cd富集和转运情况及Cd在土壤中的赋存形态的数据。结果表明:添加生物质炭可以显著提高土壤有机碳含量(P≤0.05),其中生物质炭添加量为3%,相比CK组土壤有机碳增加了35.14%~40.87%;添加生物质炭可以显著降低生菜Cd含量,尤其是3%量的生物质炭添加后,生菜叶Cd含量由0.79 mg/kg降低至0.44 mg/kg。生物质炭可以显著降低生菜中Cd的富集、转运系数,并使残渣态Cd含量增多,酸可提取态、可还原态、可氧化态Cd含量显著降低。因此,生物质炭的施用对Cd污染土壤和生菜体内Cd的积累有显著的阻控作用,特别是生物质炭添加量为3%时效果最优。 相似文献
6.
不同生物质炭输入水平下旱作农田温室气体排放研究 总被引:4,自引:0,他引:4
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭输入水平下春小麦农田土壤温室气体(CO_2、N_2O和CH_4)的排放通量进行全生育期连续观测,并分析其影响因子。结果表明:6个生物质炭输入水平处理下[0 t·hm~(-2)(CK)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2)],旱作农田土壤在春小麦全生育期内均表现为CH_4弱源、N_2O源和CO_2源。全生育期各处理CH_4平均排放通量依次为:0.005 7 mg·m~(-2)·h~(-1)、0.0047 mg·m~(-2)·h~(-1)、0.003 6 mg·m~(-2)·h~(-1)、0.003 3 mg·m~(-2)·h~(-1)、0.002 7 mg·m~(-2)·h~(-1)和0.000 4 mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:0.230 5 mg·m~(-2)·h~(-1)、0.144 1 mg·m~(-2)·h~(-1)、0.135 3 mg·m~(-2)·h~(-1)、0.098 9 mg·m~(-2)·h~(-1)、0.125 0 mg·m~(-2)·h~(-1)和0.151 3mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:0.449 2μmol·m~(-2)·s~(-1)、0.447 0μmol·m~(-2)·s~(-1)、0.430 3μmol·m~(-2)·s~(-1)、0.391 4μmol·m~(-2)·s~(-1)、0.408 0μmol·m~(-2)·s~(-1)和0.416 4μmol·m~(-2)·s~(-1)。土壤CH_4排放通量随生物质炭输入量的增加而减小;当生物质炭输入量小于30 t·hm~(-2)时,土壤N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,N_2O、CO_2排放通量则呈显著增大趋势。各处理在5~15 cm土层平均土壤温度差异显著(P0.05),在5~10 cm土层平均土壤含水量差异显著(P0.05),土壤温度及含水量受生物质炭影响明显;且CK处理不同土层的土壤温度及含水量波动最大,生物质炭输入可在一定程度上降低不同土层土壤的水热变化幅度;N_2O、CO_2排放通量与10~15 cm土层土壤温度呈显著性负相关,与20~25 cm土壤温度呈显著性正相关;CH_4平均排放通量与5~10 cm土层土壤温度呈显著性负相关,与其含水量呈显著性正相关;N_2O平均排放通量与15~20 cm土层土壤温度呈显著性正相关;CH_4、N_2O、CO_2平均排放通量与0~5 cm土层土壤水分呈显著性负相关。生物质炭的输入能够减小温室气体的排放,且会因其输入量的不同而异,因此适量应用生物质炭有利于旱作农田生育期内增汇减排。 相似文献
8.
不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征 总被引:17,自引:3,他引:17
以连续进行12年的保护性耕作长期定位试验为研究对象,探索了传统耕作(T)、传统耕作+秸秆还田(TS)、免耕不覆盖(NT)、免耕+秸秆覆盖(NTS)4种耕作措施对陇中黄土高原旱作农田豌豆-小麦双序列轮作系统的土壤团聚体中有机碳和全氮分布特征的影响。结果表明:各处理均以≥0.25 mm团聚体为优势团聚体,且≥0.25 mm团聚体含量随土层深度增加而增加,而其他粒径团聚体含量随土层深度的变化并无明显规律。较之T处理,TS、NT、NTS处理均可提升≥0.25 mm团聚体含量和平均重量直径,NTS处理提升效果最明显。TS、NT、NTS处理土壤有机碳和全氮含量均高于T处理,其中TS、NTS处理显著高于T处理,NTS处理高于TS处理;各处理土壤有机碳和全氮含量均随土层增加而减小。较之T处理,NT、TS、NTS处理可不同程度提高各粒径团聚体中有机碳和全氮含量,NTS处理的含量最高;各粒径团聚体中有机碳和全氮含量均随土层深度增加而减小;同时,团聚体中有机碳和全氮含量随粒径减小而增加。2~5 mm和0.25~2 mm和≥5 mm团聚体含量与相应粒径团聚体有机碳含量呈极显著正相关、极显著正相关和极显著负相关;0.25~2 mm和≥5 mm团聚体含量与相应级别团聚体全氮含量分别呈极显著正相关和显著负相关。T处理不同粒径团聚体有机碳和全氮贡献率按其大小排序均为(0.25 mm)(≥5 mm)(0.25~2 mm)(2~5 mm),其他3种耕作措施各粒径团聚体有机碳和全氮贡献率在各土层中的排序各有不同,并无明显规律。 相似文献
9.
为了探究不同用量氮肥配施生物质炭或小麦秸秆对旱作农田N2O排放通量的影响,在陇中黄土高原半干旱区连续进行4年不同氮素水平配施不同有机物料的田间定位试验,试验以3种施氮用量(不施氮肥、50 kg(N)·hm-2氮肥、100 kg(N)·hm-2氮肥)配施2种有机物料(小麦秸秆S、生物质炭B)及无有机物料 (C)共组成9个处理,于2016年11月—2017年10月,采用静态箱-气相色谱法,对N2O通量进行全年内连续观测。研究结果表明:观测期内,各处理N2O年平均通量大小排序SN100>CN100>SN50>CN50>BN100>SNO>BN50>CN0>BN0,各处理N2O排放通量变化趋势一致;相较N0处理(CN0、SN0、BN0)的年平均排放通量,N50(CN50、SN50、BN50)和N100(CN100、SN100、BN100)处理分别增加了6.92%和10.03%。相较CN0、CN50和CN100,与其相同氮素水平配施生物质炭后,N2O年平均排放通量分别降低了0.49%、3.15%和4.67%;配施秸秆后,N2O年平均排放通量分别增加了6.37%、3.44%和2.73%。单施氮肥或小麦秸秆配施氮肥均增加了N2O排放的增温潜势,生物质炭配施氮肥减少了N2O排放的增温潜势。主效应分析表明,氮素、秸秆均对提升N2O排放通量发挥显著效应,而生物质炭具有降低效应。相关分析表明,土壤温度与N2O通量表现为显著正相关关系,土壤含水量与N2O通量表现为显著负相关关系(P<5%)。通径分析表明,土壤温度对N2O通量的增大作用远大于土壤含水量对N2O通量的减小作用。秸秆或生物质炭与氮素无交互效应,N2O排放通量随氮素水平的增加而增大,秸秆还田促进了N2O排放而生物质炭抑制了N2O排放。因此,添加生物质炭对旱作农田固氮减排具有较大的潜力。 相似文献
10.
为探明不同氮水平下秸秆、生物质炭添加对陇中黄土高原旱作农田土壤酸解有机氮组分的影响,2014年在定西市安定区李家堡镇布设的不同氮水平下秸秆、生物质炭添加定位试验(共9个处理),利用Bremner分级法,对该试验2018年收获后的土壤有机氮组分进行测定与分析。结果表明:在0~30 cm土层(0~5、5~10、10~30 cm土层),各处理酸解总有机氮、酸解氨态氮、酸解氨基酸态氮、酸解未知态氮含量均随土层的加深而降低,酸解氨基糖态氮含量随土层的加深而增加;较之无炭处理(CN0、CN50、CN100处理的均值),生物质炭添加(BN0、BN50、BN100处理的均值)处理可提升酸解总有机氮含量10.12%、9.14%、7.61%(土层由上至下),提升酸解氨态氮含量15.02%、16.25%、17.19%(土层由上至下),提升酸解氨基酸态氮含量13.31%、11.84%、8.74%(土层由上至下),其中BN100处理下对其提升效应最显著;较之无炭处理(CN0、CN50、CN100处理的均值),秸秆添加处理(SN0、SN50、SN100处理的均值)可提升酸解氨基糖态氮含量26.46%、26.51%... 相似文献