排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
【目的】通过无人机获取荔枝冠层的遥感图像,评估每棵荔枝的开花率,以期为后续荔枝花期疏花保果、精准施肥施药提供决策依据。【方法】以遥感图像为研究对象,利用实例分割的方法分割每棵荔枝冠层后,结合园艺专家的综合判断,按开花率为0、10%~20%、50%~60%、80%及以上将开花率分为4类,使用ResNet、ResNeXt、ShuffleNetv2进行开花率分类比较,试验过程中发现ShuffleNetv2在识别准确率、参数量、训练和验证时间都有很大优势;在ShuffleNetv2上引入了空间注意力模块(Spatial attention module,SAM)后,增加了模型对位置信息的学习,在不显著增加参数量的情况下,提升荔枝冠层花期分类的精度。【结果】通过对多个主流深度神经网络的比较分析,ResNet50、ResNeXt50、ShuffleNetv2的分类精度分别达到85.96%、87.01%和86.84%,而改进后的ShuffleNetv2分类精度更高,达到88.60%;ResNet50、ResNeXt50、ShuffleNetv2和改进后的ShuffleNetv2对测试集单张冠层图像验... 相似文献
1