首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
  1篇
综合类   2篇
  2024年   1篇
  2023年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
氨基安替比林分光光度法测定水中挥发酚主要问题的探讨   总被引:1,自引:0,他引:1  
为了确保在挥发酚测定方面的精密度和准确性,本文从实验用水的选择、干扰物质的影响、显色剂——氨基安替比林的纯度对空白值的影响以及实际水样用氯仿萃取后出现乳化现象,所采取的破乳方法效果比较等方面进行比较分析。结合实验过程所获的相关数据,提出在现配现用的浓度为3%的氨基安替比林溶液中添加一定量的氯仿,之后将其置于分液漏斗中进行萃取,接着再使用活性炭来吸附氨基安替比林,从而在一定程度上能够避免由于部分氨基安替比林缩合成安替比林红而对空白值的具体测定发生的干扰作用;最后,通过比较消除乳化的一些方法,提出通过使用离心机对样品进行离心具有较好的消除乳化效果,进一步有效提高该实验中检测挥发酚的样品回收率。  相似文献   
2.
【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构的识别性能,并用类激活图生成技术度量模型的可靠性。在番茄叶部病害数据集上验证方法的有效性。【结果】应用数据增广技术后,模型在简单背景样本上的识别准确率提高了1.0%,在复杂背景样本上提高了12.5%;聚焦损失使模型的准确率提高了0.1%;该模型的识别准确率为99.8%,对各类病害的召回率在97.3%以上;应用类激活图技术生成的显著性图可有效标识模型在识别过程中的重点关注区域。【结论】该方法能够有效解决病害图像样本非均衡问题,提高了病害识别模型的泛化性能,同时类激活图可以用于分析模型的可靠性,从而为番茄叶部病害防治提供参考。  相似文献   
3.
针对温室移动机器人自主作业过程中,对视觉里程信息的实际需求及视觉里程估计因缺少几何约束而易产生尺度不确定问题,提出一种基于无监督光流的视觉里程估计方法。根据双目视频局部图像的几何关系,构建了局部几何一致性约束及相应光流模型,优化调整了光流估计网络结构;在网络训练中,采用金字塔层间知识自蒸馏损失,解决层级光流场缺少监督信号的问题;以轮式移动机器人为试验平台,在种植番茄温室场景中开展相关试验。结果表明,与不采用局部几何一致性约束相比,采用该约束后,模型的帧间及双目图像间光流端点误差分别降低8.89%和8.96%;与不采用层间知识自蒸馏相比,采用该处理后,两误差则分别降低11.76%和11.45%;与基于现有光流模型的视觉里程估计相比,该方法在位姿跟踪中的相对位移误差降低了9.80%;与多网络联合训练的位姿估计方法相比,该误差降低了43.21%;该方法可获得场景稠密深度,深度估计相对误差为5.28%,在1 m范围内的位移平均绝对误差为3.6 cm,姿态平均绝对误差为1.3o,与现有基准方法相比,该方法提高了视觉里程估计精度。研究结果可为温室移动机器人视觉系统设计提供技术参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号