首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   5篇
  5篇
综合类   3篇
畜牧兽医   56篇
植物保护   1篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2016年   4篇
  2015年   1篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
排序方式: 共有65条查询结果,搜索用时 0 毫秒
1.
The phylogenetic relationships among imported ornamental crayfish belonging to the genus Cherax were inferred from a combined dataset of 3 mitochondrial genes (COI, 16S and 12S) and by comparison with available GenBank sequences of 14 Cherax species. Furthermore, the concordance of previously described species obtained from a wholesaler (Cherax boesemani, C. holthuisi and C. peknyi) with available GenBank sequences was verified based on COI with special respect to comparison with sequences assigned as Cherax species. Recently described species C. gherardiae, C. pulcher and C. subterigneus belong to the northern group of Cherax species. Comparison and analysis with other GenBank COI sequences show previously unreported diversity of New Guinean species, suggesting 5 putative new species. Surprisingly, species assigned to the subgenus Astaconephrops do not form a monophyletic clade; this subgenus should be reappraised relative to the purported typical morphological characteristic of the uncalcified patch on male chelae. Increasing importation of crayfish underscores the importance of accurate species identification. Use of basic molecular methods is a necessary requisite for documenting occurrence, abundance and population trends of target species. Consequently, it helps to support eventual conservation decision‐making by stakeholders.  相似文献   
2.
AIM: To investigate a possible interaction between lolitrem B and ergovaline by comparing the incidence and severity of ryegrass staggers in sheep grazing ryegrass (Lolium perenne) containing lolitrem B or ryegrass containing both lolitrem B and ergovaline.

METHODS: Ninety lambs, aged approximately 6 months, were grazed on plots of perennial ryegrass infected with either AR98 endophyte (containing lolitrem B), standard endophyte (containing lolitrem B and ergovaline) or no endophyte, for up to 42 days from 2 February 2010. Ten lambs were grazed on three replicate plots per cultivar. Herbage samples were collected for alkaloid analysis and lambs were scored for ryegrass staggers (scores from 0–5) weekly during the study. Any animal which was scored ≥4 was removed from the study.

RESULTS: Concentrations of lolitrem B did not differ between AR98 and standard endophyte-infected pastures during the study period (p=0.26), and ergovaline was present only in standard endophyte pastures. Ryegrass staggers was observed in sheep grazing both the AR98 and standard endophyte plots, with median scores increasing in the third week of the study. Prior to the end of the 42-day grazing period, 22 and 17 animals were removed from the standard endophyte and AR98 plots, respectively, because their staggers scores were ≥4. The cumulative probability of lambs having scores ≥4 did not differ between animals grazing the two pasture types (p=0.41).

CONCLUSIONS AND CLINICAL RELEVANCE: There was no evidence for ergovaline increasing the severity of ryegrass staggers induced by lolitrem B. In situations where the severity of ryegrass staggers appears to be greater than that predicted on the basis of concentrations of lolitrem B, the presence of other tremorgenic alkaloids should be investigated.  相似文献   

3.
Locoweed species (Astragalus and Oxytropis spp.) are a serious toxic plant problem for grazing livestock. Horses and sheep have been conditioned to avoid eating locoweed using the aversive agent LiCl. The objective of this study was to determine if previous locoweed intoxication affects food aversion learning in horses and sheep. Horses and sheep were divided into 3 treatment groups: control (not fed locoweed and not averted to a novel feed); locoweed-novel feed averted (fed locoweed and averted to a novel feed); and averted (not fed locoweed and averted to a novel feed). Animals in the locoweed-novel feed averted groups were fed locoweed during 2 periods of 21 and 14 d, respectively, with each feeding period followed by a 14-d recovery period. Animals were averted to a novel test feed at the end of the first locoweed-feeding period, and periodically evaluated for the strength and persistence of the aversion. During the first recovery period, locoweed-novel feed averted horses ate less (9.5% of amount offered) of the test feed than did control horses (99.8%) and did not generally differ from averted horses (0%). During recovery period 2, locoweed-novel feed averted horses (4.3%) differed (P = 0.001) in consumption (% of offered) of the test feed from controls (100%) and the averted group (0%). Locoweed-novel feed averted sheep differed (P = 0.001) from controls (14.4 vs. 99.5%, respectively, during recovery period 1), whereas locoweed-novel feed averted sheep did not differ (P > 0.50) from averted sheep (0.6%). During the second recovery period, control sheep (100%) differed (P < 0.05) from averted (0%) and locoweed-novel feed averted (12.2%) groups. Two intoxicated sheep (locoweed-novel feed averted) partially extinguished the aversion during the first recovery period, but an additional dose of LiCl restored the aversion. Two of 3 intoxicated horses had strong aversions that persisted without extinction; 1 horse in the locoweed-novel feed averted group had a weaker aversion. These findings suggest that horses and sheep previously intoxicated by locoweeds can form strong and persistent aversions to a novel feed, but in some animals, those aversions may not be as strong as in animals that were never intoxicated.  相似文献   
4.
White snakeroot and rayless goldenrod cause "trembles" and "milk sickness" in livestock and humans, respectively. The toxin in white snakeroot and rayless goldenrod was identified in 1927 and 1930, respectively, as tremetol. It was reported that the toxin in white snakeroot disappears as it is dried and that completely dried plants were incapable of producing trembles or milk sickness. Conversely, it has been reported that the rayless goldenrod toxin was not destroyed by drying and that the plant is toxic either fresh or dry. In this study the concentrations of tremetone, dehydrotremetone, and structurally similar compounds were determined in white snakeroot and rayless goldenrod before and after various drying conditions. Tremetone, dehydrotremetone, and structurally similar compounds in rayless goldenrod and white snakeroot are most stable upon freeze-drying, followed by air-drying, and least stable upon oven-drying (60 °C). Also demonstrated is that tremetone is stable and that dried white snakeroot and rayless goldenrod are capable of inducing toxicosis in livestock.  相似文献   
5.
6.
7.
8.
9.
Death camas (Zigadenus spp.) is a common poisonous plant on foothill rangelands in western North America. The steroidal alkaloid zygacine is believed to be the primary toxic component in death camas. Poisonings on rangelands generally occur in the spring when death camas is abundant, whereas other more desirable forage species are limited in availability. In most cases where livestock are poisoned by plants in a range setting, there is more than one potential poisonous plant in that area. One common poisonous plant that is often found growing simultaneously in the same area as death camas is low larkspur (Delphinium nuttallianum). Consequently, the objectives of this study were to conduct acute toxicity studies in mice and to determine if coadministration of low larkspur will exacerbate the toxicity of death camas. We first characterized the acute toxicity of zygacine in mice. The LD(50) of zygacine administered intravenously (i.v.) and orally was 2.0 ± 0.2 and 132 ± 21 mg/kg, respectively. The rate of elimination of zygacine from whole blood was determined to be 0.06 ± 0.01/min, which corresponds to an elimination half-life of 13.0 ± 2.7 min. The i.v. LD(50) of total alkaloid extracts from a Utah and a Nevada collection were 2.8 ± 0.8 and 2.2 ± 0.3 mg/kg, respectively. The i.v. LD(50) of methyllycaconitine (MLA), a major toxic alkaloid in low larkspur, was 4.6 ± 0.5 mg/kg, whereas the i.v. LD(50) of a 1:1 mixture of MLA and zygacine was 2.9 ± 0.7 mg/kg. The clinical signs in mice treated with this mixture were very similar to those of mice treated with zygacine alone, including the time of onset and death. These results suggest that there is an additive effect of coadministering these 2 alkaloids i.v. in mice. The results from this study increase knowledge and understanding regarding the acute toxicity of death camas. As combined intoxications are most likely common, this information will be useful in further developing management recommendations for ranchers and in designing additional experiments to study the toxicity of death camas to livestock.  相似文献   
10.
Salvia reflexa (lance-leaf sage)-contaminated alfalfa hay was fed to ~500 mixed-breed beef cattle. Within hours of exposure, nearly half of the cattle developed lethargy, anorexia, depression, and recumbency, followed by bellowing, colic, and death. Even though the uneaten contaminated hay was removed the first day, nearly 100 animals died within the first 48 h. Three of these cattle were examined postmortem, and tissues and hay samples were collected for microscopic and chemical analysis. Several days later, a smaller number of the clinically poisoned cattle developed neurologic disease with aberrant behavior, aggression, icterus, blindness, exhaustion, and death. A total of 165 cattle were fatally poisoned. Poisoned cattle had swollen, dark, mottled livers that had a prominent nutmeg-like lobular pattern on cut section. Histologically, there was severe centrilobular-to-panlobular hepatic necrosis with marked hepatocellular swelling, degeneration, and necrosis. The surviving cattle developed liver disease characterized by altered serum biochemical analyses and microscopic hepatocellular degeneration and necrosis. In subsequent biopsies and analysis, these lesions resolved within 6–7 mo. After confirming toxicity of the hay in cattle, goats, and mice, followed by a mouse bioassay–guided chemical fractionation process, Salvia reflexa was identified as the contaminant in the hay responsible for the hepatotoxicity. S. reflexa has not been reported previously to cause fatal hepatotoxicity in livestock in North America, to our knowledge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号