首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
林业   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
松材线虫病是我国近几十年来最严重的一种森林病害,加强疫情的监测迫在眉睫。本研究在自建数据集的基础上采用3种不同的注意力模块(CBAM、SE和CA)改进YOLOv5算法并结合数字正射影像图自动识别松材线虫病受害木,分别对比了改进模型CBAM-YOLOv5、SE-YOLOv5、CA-YOLOv5与YOLOv5模型的识别效果,实现了对变色松树和枯死疫木检测效果的提升。结果表明:3种注意力改进策略的变色松树查全率、平均精度和F1分数显著提高,查准率不逊色于YOLOv5模型;综合考量查全率和F1分数指标,SE-YOLOv5模型的变色松树和枯死疫木检测效果最好,其F1分数分别达到89.7%和76.9%,比原模型分别提高了5.5%和5.4%,其检测精度分别为91.7%和80.3%,较YOLOv5模型分别提升了4.7%和5.1%;在理想置信度阈值情况下3种注意力改进策略的变色松树和枯死疫木查全率均值分别为85.4%和76.6%,基本满足实际检测需求。对各注意力改进模型检测层的特征图和热力图进行剖析可以看出,嵌入注意力机制有利于提取高贡献度的特征成分,可以提升变色松树特征提取的准确性。因此,改进的YOL...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号