排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
松材线虫病是我国近几十年来最严重的一种森林病害,加强疫情的监测迫在眉睫。本研究在自建数据集的基础上采用3种不同的注意力模块(CBAM、SE和CA)改进YOLOv5算法并结合数字正射影像图自动识别松材线虫病受害木,分别对比了改进模型CBAM-YOLOv5、SE-YOLOv5、CA-YOLOv5与YOLOv5模型的识别效果,实现了对变色松树和枯死疫木检测效果的提升。结果表明:3种注意力改进策略的变色松树查全率、平均精度和F1分数显著提高,查准率不逊色于YOLOv5模型;综合考量查全率和F1分数指标,SE-YOLOv5模型的变色松树和枯死疫木检测效果最好,其F1分数分别达到89.7%和76.9%,比原模型分别提高了5.5%和5.4%,其检测精度分别为91.7%和80.3%,较YOLOv5模型分别提升了4.7%和5.1%;在理想置信度阈值情况下3种注意力改进策略的变色松树和枯死疫木查全率均值分别为85.4%和76.6%,基本满足实际检测需求。对各注意力改进模型检测层的特征图和热力图进行剖析可以看出,嵌入注意力机制有利于提取高贡献度的特征成分,可以提升变色松树特征提取的准确性。因此,改进的YOL... 相似文献
1