首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3) and its ligand, galectin-9 (Gal-9), are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV)-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection.  相似文献   

2.
Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4+CD25+Foxp3+ T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3+CD4+ cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4+ cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4+ T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4+ and CD25+ T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4+ cells in the CD4+ T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4+CTLA-4+ T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection.  相似文献   

3.
Programmed death-1 (PD-1) is a known immunoinhibitory receptor that contributes to immune evasion of various tumor cells and pathogens causing chronic infection, such as bovine leukemia virus (BLV) infection. First, in this study, to establish a method for the expression and functional analysis of bovine PD-1, hybridomas producing monoclonal antibodies (mAb) specific for bovine PD-1 were established. Treatment with these anti-PD-1 mAb enhanced interferon-gamma (IFN-γ) production of bovine peripheral blood mononuclear cells (PBMC). Next, to examine whether PD-1 blockade by anti-PD-1 mAb could upregulate the immune reaction during chronic infection, the expression and functional analysis of PD-1 in PBMC isolated from BLV-infected cattle with or without lymphoma were performed using anti-PD-1 mAb. The frequencies of both PD-1+ CD4+ T cells in blood and lymph node and PD-1+ CD8+ T cells in lymph node were higher in BLV-infected cattle with lymphoma than those without lymphoma or control uninfected cattle. PD-1 blockade enhanced IFN-γ production and proliferation and reduced BLV-gp51 expression and B-cell activation in PBMC from BLV-infected cattle in response to BLV-gp51 peptide mixture. These data show that anti-bovine PD-1 mAb could provide a new therapy to control BLV infection via upregulation of immune response.  相似文献   

4.
The development of bovine leukemia virus (BLV) infection was studied in 14 noninfected young adult cattle exposed to 25 to 30 BLV-infected cows in an area of approximately 0.5 ha. Of 7 cattle (group 1) exposed beginning in July and August (midsummer) of 1976, 4 were infected by October, and all 7 by November (4 months' exposure). Of 7 cattle (group 2) exposed from February 1977 (midwinter), all remained negative for 3 months, and only 1 was positive after 6 months. By October 1977, however, 4 cattle in this group were infected, indicating that contact transmission of BLV is prevalent during the summer months. This, and the fact that BLV-infected lymphocytes were recovered from tabanids allowed to feed on a BLV-positive cow, supports the idea that bloodsucking insects play a major role in the spread of BLV.  相似文献   

5.
Expression of L-selectin was determined by single- and two-colour immunofluorescence on granulocytes, peripheral blood mononuclear cells (PBMC) and blasts of bovine origin by means of a monoclonal antibody IVA94 which recognizes bovine L-selectin (CD62L). Cells were separated from peripheral blood of healthy cattle and colleagues infected with bovine leukaemia virus (BLV). BLV-infected animals comprised lymphocytotic and non-lymphocytotic cows. L-selectin was expressed on 90-98% of granulocytes in all tested animals. The percentage of PBMC expressing L-selectin was lower in cattle with persistent lymphocytosis than in non-lymphocytotic or BLV-free cattle, and inversely correlated with lymphocyte counts. The ratio of B lymphocytes stained for L-selectin was significantly decreased from 60.2 +/- 1.9% in BLV-free cattle to 43.8 +/- 3.6 and 22.5 +/- 5.7% in non-lymphocytotic and lymphocytotic cattle, respectively. B-lymphocytes stained for L-selectin exhibited about 50% reduction in L-selectin expression in BLV-infected cattle compared with BLV-free cattle, as judged by the mean fluorescence intensity (MFI). The percentage of L-selectin-positive PBMC not bearing surface immunoglobulin M (predominantly T lymphocytes) was comparable in BLV-free and BLV-infected cattle. However, L-selectin expression on T lymphocytes was reduced (about 50%) in BLV-infected cattle, as judged by the MFI. We suppose that BLV infection results in a decreased L-selectin expression on lymphocytes, and accordingly, it may contribute to deregulation of the host immune system.  相似文献   

6.
To examine the effect of recombinant bovine interferon-gamma (rbIFN-gamma) on cattle persistently infected with bovine leukemia virus (BLV), BLV-infected cattle were inoculated intraperitoneally with IFN-gamma. All cattle were febrile after inoculation with IFN-gamma and then recovered within 48 h. Flow cytometric analysis showed that the numbers of CD4+ and CD8+ T cells were decreased for 2-3 days and then their numbers were recovered. The number of gammadelta T cells increased after the fever. In contrast, the number of IgM+ lymphocytes remained low for about 1 week. Moreover, the numbers of syncytia produced by peripheral blood lymphocytes decreased and remained low compared to that before IFN-gamma administration. These results suggest that IFN-gamma induces the up-regulation of gammadelta T cells, decreases the number of IgM+ lymphocytes and suppresses the growth of BLV in BLV-infected cattle in vivo.  相似文献   

7.
The antiviral effects of recombinant bovine interferon-tau (rboIFN-tau) on bovine leukemia virus (BLV) were examined in vitro and in vivo. In the in vitro experiments, BLV titers decreased in FLK-BLV cells and in peripheral blood mononuclear cells of BLV-infected cattle treated with rboIFN-tau at a concentration higher than 10(2) U/ml. In order to examine the in vivo effects of rboIFN-tau, 10 BLV-infected cattle were subcutaneously injected with rboIFN-tau. In the first experiment, 6 cows were administrated with 10(5) U/kg body weight of rboIFN-tau 3 times per week for 4 weeks, while in the second experiment 4 cows were administrated with 10(6) U/kg body weight of rboIFN-tau 3 times per week for 3 weeks. No adverse effects were observed after the administration of rboIFN-tau. In experiment No. 1, the mean BLV titers in cattle decreased in the post-rboIFN-tau administration period compared to the pre-rboIFN-tau administration period. In experiment No. 2, the mean BLV titers in cattle decreased in the rboIFN-tau administration period. These results suggest that rboIFN-tau decreases BLV titers in vitro and in vivo and that rboIFN-tau possibly reduces the degree of BLV titer in cattle without severe side effects.  相似文献   

8.
The purpose of this study was to determine the effect of T-lymphocytes and phytohemagglutinin (PHA), a T-cell mitogen, on the expression of bovine leukemia virus (BLV) in cultured B-lymphocytes from BLV-infected cattle and sheep. Bovine B-lymphocytes were isolated by negative selection via complement-mediated lysis of T-lymphocytes. Additionally, bovine and ovine B-lymphocytes were positively selected using fluorescence activated cell sorting. Expression of BLV in cultured bovine and ovine B-lymphocytes occurred in the absence of T-lymphocytes and without PHA stimulation. The results of this study demonstrate that BLV replication in cultured B-lymphocytes is T-cell independent. This finding may have implications for the mechanism of viral latency within infected B-lymphocytes.  相似文献   

9.
The single intradermal comparative test was used with both avian and bovine tuberculin. Three cattle infected with bovine leukosis virus (BLV) were used as a source of infection. BLV-positive and susceptible animals were tuberculin tested alternately. Fifteen susceptible calves and 15 susceptible sheep were tested. A further three calves and three sheep were used as controls; the needles of the tuberculin syringes were deliberately contaminated with blood from the BLV-infected cattle, before being used in the test. Whereas all three calves and the three sheep inoculated intradermally with contaminated needles developed BLV infections, all of the other 30 animals have remained serologically negative to BLV for 10 months. Transmission of BLV with needles contaminated with BLV-infected blood was prevented by wiping the needles with absorbent cotton wool.  相似文献   

10.
ABSTRACT: The inhibitory receptor programmed death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1) are involved in immune evasion mechanisms for several pathogens causing chronic infections. Blockade of the PD-1/PD-L1 pathway restores anti-virus immune responses, with concomitant reduction in viral load. In a previous report, we showed that, in bovine leukemia virus (BLV) infection, the expression of bovine PD-1 is closely associated with disease progression. However, the functions of bovine PD-L1 are still unknown. To investigate the role of PD-L1 in BLV infection, we identified the bovine PD-L1 gene, and examined PD-L1 expression in BLV-infected cattle in comparison with uninfected cattle. The deduced amino acid sequence of bovine PD-L1 shows high homology to the human and mouse PD-L1. The proportion of PD-L1 positive cells, especially among B cells, was upregulated in cattle with the late stage of the disease compared to cattle at the aleukemic infection stage or uninfected cattle. The proportion of PD-L1 positive cells correlated positively with prediction markers for the progression of the disease such as leukocyte number, virus load and virus titer whilst on the contrary, it inversely correlated with the degree of interferon-gamma expression. Blockade of the PD-1/PD-L1 pathway in vitro by PD-L1-specific antibody upregulated the production of interleukin-2 and interferon-gamma, and correspondingly, downregulated the BLV provirus load and the proportion of BLV-gp51 expressing cells. These data suggest that PD-L1 induces immunoinhibition in disease progressed cattle during chronic BLV infection. Therefore, PD-L1 would be a potential target for developing immunotherapies against BLV infection.  相似文献   

11.
A simple ELISA is described for quantifying expression of bovine leukaemia virus (BLV) antigens in short-term cultures of peripheral blood lymphocytes (PBL) isolated from infected cattle. The PBL-ELISA demonstrated that antigen expression levels in infected cattle could vary by more than 50-fold. Inoculation of sheep with dilutions of lymphocytes from two BLV-infected cattle, differentiated in the PBL-ELISA by 50 to 100-fold, suggested that antigen expression levels were correlated with infectivity. Haematological data indicated that increased antigen expression in PBL cultures was associated with an increased number of circulating B-lymphocytes, irrespective of whether or not an animal had lymphocytosis. This supported the hypothesis that BLV-infected cattle that are PBL-ELISA positive are more infectious and may present a greater risk of transmitting the disease. The applicability of the PBL-ELISA to a field situation was assessed with 98 BLV-infected cattle from three commercial dairy herds with infection prevalences of 11%, 23% and 47%. Similar percentages (49%, 50% and 52%) of PBL-ELISA positive cattle were identified among those infected cattle available for testing in the three herds. An additional 22 infected cattle from an experimental herd were tested to assess the stability of antigen expression levels over an 8 month period. Fewer (27%) of these cattle were identified as PBL-ELISA positive and antigen expression levels were generally lower than those observed in the commercial herds. Antigen expression levels in the experimental herd remained stable over the period of the study. The potential of the PBL-ELISA to assist in BLV eradication programs by identifying those seropositive cattle with the greatest potential to transmit infection is discussed.  相似文献   

12.
A microbiological cancer test, previously verified in men and dogs using a clostridium strain (Clostridium butyricum CNRZ 528), was applied to cattle infected with bovine leucosis virus (BLV). An extended period of time was allowed to pass after infection with BLV, which had been checked up through specific serological and virological examinations. The cattle belonged to different age groups and stages of infection (with and without haematological alterations [preleukosis], with incipient tumour development [swelling of externally visible and palpable lymph nodes]). Controls included BLV-infected cows as well as test animals to which isotonic saline had been applied or healthy BLV-free cattle in which the clostridium strain had been used. The serological investigation was carried out in a blind test. 3 of 6 BLV-infected spore-treated heads of cattle responded positively to the cancer test, while the other 3 were negative. The 3 cows with positive cancer test were haematologically and serologically leucosis-positive animals with clinically detectable enlargement of lymph nodes. The 3 negative ones of this group, also serologically and haematologically leucosis-positive, were younger animals without signs of tumorous process. 3 spore-treated BLV-free cows and 2 BLV-infected animals, treated with isotonic saline, were cancer test-negative, as well. Finally, 4 BLV-infected and 2 BLV-free cattle, all of them without spore injection, were completely cancer test-negative. 1 cow of the BLV-infected group did not produce spore antibodies after spore treatment, while 1 cow of the BLV-free untreated control group developed spore antibodies.  相似文献   

13.
14.
Direct immunofluorescence and fluorescence-activated cell sorter techniques were used for the detection of surface immunoglobulin positive (SIg+) cells in peripheral blood lymphocytes (PBL's) of bovine leukaemia virus (BLV) infected cattle with or without persistent lymphocytosis (PL+, PL-) and in BLV-free cattle. The percentage of SIg+ cells was more than twice as high in BLV+PL+ cattle than in BLV-free and BLV+PL- cattle. Bovine T cells, and T cell subsets were identified indirectly by the same techniques using three monoclonal antibodies (MAb's) specific for all T cells (IL-A43), T helper (BoT4) cells (IL-A12) and T cytotoxic (BoT8) cells (IL-A17). The major histocompatibility complex (MHC) determinants of both class II (BoT4) and class I (BoT8) as well as all T cells were significantly reduced in BLV+PL+ compared to BLV-free cattle. The actual decrease in the BoT8 cell subset or the dilution effect that would change effector:target cell ratio suggests that a resultant decrease in cytotoxic activity in BLV+PL+ cattle may play an important role in the progress of BLV infection in cattle.  相似文献   

15.
Peripheral blood lymphocytes (PBL) from normal and bovine leukemia virus (BLV)-infected cattle were prepared by density gradient technique and incubated with and without phytohaemagglutinin (PHA) and pokeweed mitogen (PWM). RNA synthesis was determined at different periods of incubation by 3H-uridine incorporation. PBL from BLV-infected cows with persistent lymphocytosis (PL) showed the highest spontaneous RNA synthesis. PBL from BLV-infected cows with normal lymphocyte counts synthesized more RNA than cells from normal animals. Decreased mitogen responses were observed in PBL from infected cows with PL in comparison to normal and BLV-infected cattle without PL. PHA and PWM did not show significant differences in their degree of stimulation of RNA synthesis.  相似文献   

16.
Expression of L‐selectin was determined by single‐ and two‐colour immunofluorescence on granulocytes, peripheral blood mononuclear cells (PBMC) and blasts of bovine origin by means of a monoclonal antibody IVA94 which recognizes bovine L‐selectin (CD62L). Cells were separated from peripheral blood of healthy cattle and colleagues infected with bovine leukaemia virus (BLV). BLV‐infected animals comprised lymphocytotic and non‐lymphocytotic cows. L‐selectin was expressed on 90–98 % of granulocytes in all tested animals. The percentage of PBMC expressing L‐selectin was lower in cattle with persistent lymphocytosis than in non‐lymphocytotic or BLV‐free cattle, and inversely correlated with lymphocyte counts. The ratio of B lymphocytes stained for L‐selectin was significantly decreased from 60.2 ± 1.9 % in BLV‐free cattle to 43.8 ± 3.6 and 22.5 ± 5.7 % in non‐lymphocytotic and lymphocytotic cattle, respectively. B‐lymphocytes stained for L‐selectin exhibited about 50 % reduction in L‐selectin expression in BLV‐infected cattle compared with BLV‐free cattle, as judged by the mean fluorescence intensity (MFI). The percentage of L‐selectin‐positive PBMC not bearing surface immunoglobulin M (predominantly T lymphocytes) was comparable in BLV‐free and BLV‐infected cattle. However, L‐selectin expression on T lymphocytes was reduced (about 50 %) in BLV‐infected cattle, as judged by the MFI. We suppose that BLV infection results in a decreased L‐selectin expression on lymphocytes, and accordingly, it may contribute to deregulation of the host immune system.  相似文献   

17.
Tumor necrosis factor (TNF)-alpha is thought to be one of the cytokines that account for bovine leukemia virus (BLV)-induced B-cell lymphoproliferative disorder, however, information on TNF-alpha expression in B-cells is limited. In this study, the expression of TNF-alpha in IgM(+) B-cells from BLV-infected sheep with or without lymphocytosis was determined. Freshly isolated IgM(+) B-cells from three sheep with lymphocytosis constitutively transcribed TNF-alpha mRNA. Although TNF-alpha mRNA expression in IgM(+) B-cells was transiently up-regulated after cell culture, TNF-alpha mRNA expression was markedly higher in lymphocytotic sheep when compared to that of non-lymphocytotic sheep or uninfected sheep. Expression of membrane-bound TNF-alpha on IgM(+) B-cells was also augmented in lymphocytotic sheep. TNF-alpha expression in lymphocytotic sheep may support the proliferation of B-cells.  相似文献   

18.
An experimental model of chronic infection with bovine leukemia virus (BLV) was established in young calves within a relatively short time. In the sera of all infected calves, precipitating antibodies were detected within 5 weeks after infection but upon disease progression pattern of cellular profiles varied. Three calves exhibited transient lymphocytosis 3-5 weeks after infection, two became persistent lymphocytotic (PL+) by that time and one stayed non-lymphocytotic (PL-) for 11 weeks and became PL+ after 4.5 months. Eventually all infected calves became PL+ by the end of the experiment, 6-12 months after infection. Increase of total counts of peripheral blood mononuclear cells (PBMC) related to polyclonal expansion of B-cells. The latter was assessed in all infected calves where the expansion of CD5-bearing cells (B+ CD5+) correlated with increase or decrease of total PBMC counts. Other cell populations such as CD4 and CD8 were also affected. Percentages decreased by 5 weeks after experimental infection to about half their original values though actual cell numbers stayed relatively stable. The experimental model we established compared well with field cases of naturally BLV-infected cattle and thus permitted the investigation of the disease at early stages of infection.  相似文献   

19.
The migration of fluorescein isothiocyanate labelled lymphocytes through the tracheobronchial mucosa has been studied in cattle. Following intratracheal inoculation of labelled non-infected autologous lymphocytes and bovine leukosis virus (BLV) infected heterologous (presumed allogeneic) lymphocytes, the labelled lymphocytes appeared in the blood circulation between 4 and 7 days post inoculation. Following intravenous inoculation of labelled autologous lymphocytes, the cells could be detected in the circulation for 10 days post inoculation whereas BLV infected and non-infected heterologous lymphocytes could be detected for only 2 days. The migration of BLV-infected heterologous lymphocytes through the tracheobronchial mucosa caused a delay in the appearance of labelled lymphocytes in the circulation and a corresponding delay in the appearance of BLV antibodies. Comparison was made of the effect of two different routes of inoculation, subcutaneous and intratracheal on the incubation period as indicated by the detection of antibody. Subcutaneous inoculation of 1 X 10(4), 5 X 10(3), 1 X 10(3) of lymphocytes from a BLV infected cow caused seroconversion whereas 5 X 10(2) cells did not. Intratracheal inoculation of 5 X 10(3) cells caused sero-conversion. One animal did not develop BLV antibody until 30 weeks after inoculation although BLV could be isolated from the blood at 24 and 26 weeks post inoculation.  相似文献   

20.
Two calves each were inoculated with 1.5 x 10(8) or 5 x 10(9) lymphocytes collected from each one cow which had persistent lymphocytosis (PL) and antibodies to bovine leukemia virus (BLV). A sudden increase in the number of peripheral blood lymphocytes (PBL) was observed 14 and 23 days, respectively, after inoculation and the maximum number reached 29,000 and 52,000/microliters 72 and 57 days after inoculation. Although the degree of PL decreased gradually in these cattle, it continued until 14 and 44 months after inoculation when one animal was sacrificed and the other died of lymphosarcoma. The PL was passaged in cattle by inoculation of a large number of PBL obtained from cattle at the stage of PL (PLL). The degree of PL was severer in cattle inoculated with a larger number of PLL. PL was not caused by inoculation of PBL obtained from either BLV-infected non-PL cattle or cattle free of BLV. The PL was also caused by inoculation of PLL into BLV-infected non-PL cattle. On the other hand, it was not observed after inoculation of a large amount of cell-free virus obtained from short-term cultures of PLL. Antibodies to BLV developed earlier and to higher levels in cattle inoculated with PLL than in those inoculated with cell-free virus. These facts show that infection with BLV was established more effectively by PLL than by cell-free virus, the infection may occur by lymphocyte to lymphocyte interaction and the actual number of infected BLV may have an important role in development of PL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号