首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carcass and live measurements of 203 pigs representing seven genetic populations and four target live weights (100, 114, 128, and 152 kg) were used to evaluate alternative measures of carcass composition. Measures of carcass lean (fat tissue-free lean, FFLM; lipid-free soft tissue, LFSTIS; and dissected lean in the four lean cuts, DL), fat (total carcass fat tissue, TOFAT), and lipid mass (soft tissue lipid, STLIP) were evaluated. Overall, LFSTIS was 22.8% greater than FFLM (47.8 vs 38.9 kg) and TOFAT was 30% greater than STLIP (38.5 vs 29.6 kg). The allometric growth coefficients relative to carcass weight were different for the measures: b = 0.776, 0.828, 0.794, 1.37, and 1.49 for FFLM, LFSTIS, DL, TOFAT, and STLIP, respectively. At 90 kg carcass weight, the predicted growth of FFLM, LFSTIS, TOFAT, and STLIP was 0.314, 0.420, 0.553, and 0.446 kg/kg increase in carcass weight. The difference between FFLM and LFSTIS, representing nonlipid components of the carcass fat tissue, was greater for barrows than for gilts (9.2 vs 8.6 kg). Lipid-free soft tissue mass was predicted more accurately from carcass or live animal measurements than FFLM with smaller relative RSD (4.6 vs 6.5% of their mean values). The alternative measures of carcass composition were evaluated as predictors of empty body protein (MTPRO) and lipid (MTLIP) mass. Empty body protein was predicted with similar accuracy (R2 = 0.74 to 0.81) from either DL, FFLM, LFSTIS, or ribbed carcass measurements. Empty body lipid was predicted more accurately from TOFAT (R2 = 0.92) or STLIP (R2 = 0.93) than ribbed carcass measurements (R2 = 0.88). Although the alternative measures of lean mass (LFSTIS vs FFLM) and lipid mass (TOFAT vs STLIP) were highly related to each other (r = 0.93 to 0.98), they had different relative growth rates (allometric coefficients) and thus cannot be predicted as linear functions of the similar alternative variable without significant weight group biases. From the 100- to 152-kg target weight groups, gilts gained 12.9% greater FFLM and 12.1% greater MTPRO but only 4.4% greater LFSTIS than barrows. Fat-free lean mass is more precise as a measure of muscle growth and as a predictor of lysine requirements. Lipid-free soft tissue can be obtained more quickly and predicted more accurately from carcass or live animal measurements.  相似文献   

2.
Barrows and gilts of 2 genetic lines with differing lean gain potentials (high-lean = 375 g of fat-free lean/d; low-lean = 280 g of fat-free lean/d) were used to determine tissue and organ weights and compositions from 20 to 125 kg of BW. The experiment was a 2 (genetic line) x 2 (sex) x 5 (BW) factorial arrangement of treatments in a completely randomized design conducted with 2 groups of pigs in 6 replicates (n = 120 pigs). Six pigs from each sex and genetic line were slaughtered at 20 kg of BW and at 25 kg of BW intervals to 125 kg of BW. At slaughter, the internal tissues and organs were weighed. Loin and ham muscles were dissected from the carcass and trimmed of skin and external fat, and the ham was deboned. Residuals from the loin and ham were combined with the remaining carcass. Body components were ground, and their compositions were determined. The results demonstrated that tissue weights increased (P < 0.01) as BW increased. Loin and ham muscle weights increased but at a greater rate in the high-lean line and in gilts resulting in genetic line x BW and sex x BW interactions (P < 0.01). Liver and heart expressed on a BW or a percentage of empty BW basis increased at a greater rate in the high-lean line resulting in a genetic line x BW interaction (P < 0.01). Liver and intestinal tract weights were heavier in barrows than in gilts, significant only at 45 (P < 0.05), 75 (P < 0.01), and 100 (P < 0.05) kg of BW. Loin and ham muscles from the high-lean genetic line and gilts had greater (P < 0.01) water, protein, and ash contents compared with the low-lean genetic line and barrows resulting in genetic line x BW and sex x BW interactions (P < 0.01). The remaining carcass (minus loin and ham muscles) had greater (P < 0.01) amounts of water and protein, and less (P < 0.01) fat in the high-lean genetic line and gilts. The high-lean genetic line and gilts had more total body water, protein, and ash, but less body fat, with these differences diverging as BW increased, resulting in a genetic line x BW interaction (P < 0.01). The results indicated that liver and heart weights were greater in high-lean pigs, reflecting the greater amino acid metabolism, whereas the liver and intestinal tract weights were greater in barrow than gilts, reflecting their greater feed intakes and metabolism of total nutrients consumed.  相似文献   

3.
Forty-five pigs with an average initial live weight of 60 kg were used to investigate the effects of daily exogenous porcine pituitary growth hormone administration at two dose levels (pGH; 0, excipient buffer injected, and 100 micrograms.kg-1.d-1) for a 31-d period on the performance and body composition of boars, gilts and barrows allowed to consume feed ad libitum. Excipient boars consumed less feed, exhibited faster and more efficient growth (P less than .01) and produced less fat and more protein and water (P less than .01) in the empty body compared with excipient barrows, which in turn contained more fat and less water (P less than .05) in the empty body than did excipient gilts. These differences were largely eliminated by pGH administration, which induced differential effects in growth performance and body composition in boars, gilts and barrows. Growth hormone administration improved growth rate by 13, 22 and 16% and feed conversion efficiency by 19, 34 and 32% in boars, gilts and barrows, respectively. The reduction of body fat content (g/kg) elicited by pGH was 22, 36 and 33% for boars, gilts and barrows, respectively, with a corresponding increase (P less than .01) of body protein and water content. The magnitude of the pGH responses was greatest for gilts and barrows compared with boars, negating intrinsic sex-effect differences in growth performance and body composition of pigs. Pigs used in this study and treated with pGH exhibited a rate of protein deposition (approximately 225 g/d) far greater than previously reported, and as such redefine the genetic capacity for lean tissue growth by the pig.  相似文献   

4.
Ninety hybrid (mainly Large White × Landrace) pigs from 2 experimental replicates were used to study the potential use of computed tomography (CT) as a nondestructive technology for estimating the chemical body composition of growing pigs. Body tissue components (lean, fat, and bone) of 6 live pigs from each sex (boars, gilts, and barrows) were assessed by CT imaging before slaughter at approximately 30, 60, 90, 120, and 150 kg of BW. After slaughter, the empty body components were ground and frozen until analyzed for protein, lipid, ash, and moisture content. Several growth functions were evaluated and the allometric function (Y = aBW(b)), which was evaluated as log(10)chemical component weight = b(0) + b(1)log(10)BW, provided the best fit to the data. For each sex, the allometric coefficient (b(1)) for protein (0.92 to 0.99) was close to but less than 1; for ash (1.03 to 1.12), it was close to but greater than 1; for moisture (0.82 to 0.86), it was less than 1, and for lipid (1.61 to 1.71), it was greater than 1. Deposition rates (change in component weight per unit change in BW) for each chemical component were predicted using derivatives of the function. The mean deposition rates for protein and lipid were 0.141 and 0.286 kg/kg of BW gain, respectively. The deposition rate for protein was generally stable across different BW, whereas that for lipid increased as BW increased. In addition, linear, quadratic, exponential, and logistic functions were fitted to the data to study the relationship between the CT data and chemical components. The linear function was assessed to be the best equation, based on the Bayesian information criterion. The prediction equation for protein (kg) = -1.64 + 0.28 × CT lean (kg), and for lipid (kg) = -0.69 + 1.09 × CT fat (kg), had R(2) values of 0.924 and 0.987, respectively. Sex had no effect (P > 0.05) on the prediction of protein and lipid. The effect of BW was not significant (P > 0.05) for the prediction of lipid, but it was significant (P > 0 0.05) for the prediction of protein. However, the addition of BW to the base prediction equation for protein resulted in an increase of only 0.013 in the R(2) value. It was concluded from this study that CT scanning has great potential as a nondestructive technology for estimating the physical and chemical body composition of pigs. Additional research is required to validate the utility and accuracy of the prediction equations.  相似文献   

5.
Two genetic lines of barrows and gilts with different lean growth rates were used to determine the BW and chemical composition growth from 23 to 125 kg of BW. The experiment was a 2 x 2 x 5 factorial arrangement of treatments in a completely randomized design conducted in 2 replicates. Six pigs from each sex and genetic line were killed at approximately 25-kg intervals from 23 kg to 125 kg of BW. At slaughter, tissues were collected and weighed. All components were ground and frozen until analyzed for water, protein, lipid, and ash. Serial BW data were fitted to alternative functions of day of age. Based on Akaike's information criteria values, the random effects model, BW(i, t) = (1 + c(i))(b(0) + b(1)t + b(2)t(2)), was the best mixed model equation. The chemical component mass data were fitted to alternative functions of BW. The allometric function, chemical component mass = aBW(b), provided the best fit to the data. Daily deposition rates of each chemical component were predicted by using the derivatives of the 2 functions. The overall ADG of the 2 genetic lines were not different. Barrows had 0.052 kg/d greater (P = 0.03) ADG than gilts. Allometric growth coefficients for all 4 chemical components were different (P < 0.01) for each genetic line. Allometric coefficients and predicted relative growth (g/kg of BW gain) for protein and moisture mass were greater (P < 0.01) for the high lean-gain pigs than the low lean-gain pigs. Allometric coefficients for lipid mass were smaller (P = 0.001) for the high lean-gain pigs than the low lean-gain pigs overall. Allometric coefficients and predicted relative growth rates for lipid mass were greater (P < 0.01) and for moisture and protein mass were lesser (P < 0.002) than the gilts. Compared with low lean-gain pigs, high lean-gain pigs had (1) 32.8% lesser predicted daily rates of lipid deposition (200 vs. 305 +/- 80 g/d), with the difference increasing from 23 to 37% from 25 to 125 kg of BW; (2) 12.3% greater daily rates of protein deposition (118.7 vs. 106.0 +/- 3.3 g/d); and (3) 18.8% greater predicted daily moisture accretion rates (423 vs. 356 +/- 9 g/d). Overall, barrows had 21.3% greater lipid deposition (279 vs. 230 +/- 78.2 g/d) than gilts. In this study, barrows and gilts had similar predicted daily moisture, protein, and ash accretion rates.  相似文献   

6.
生长肥育猪胴体品质和瘦肉生长指数的研究   总被引:1,自引:0,他引:1  
为验证NRC( 1998)生长猪营养需要模型 ,进而建立我国生长猪营养需要模型 ,本试验在较高营养水平下研究测定了生长肥育猪生产性能、胴体品质和瘦肉生长指数。全期试验结果表明 ,在一定营养水平和环境条件下 ,公、母猪日增重、采食量、饲料转化率差异不显著 (P >0 .0 5) ,但公猪日增重有高于母猪日增重的趋势。胴体品质上 ,公、母猪热胴体重、瘦肉重、背脂、瘦肉脂肪含量差异不显著 (P >0 .0 5)。通过测定热胴体重、最后肋背脂得到瘦肉生长指数为 :去势公猪 2 78g/d ,母猪 2 82g/d ,公母平均 2 81g/d。通过测定热胴体重 ,第 10肋背脂、第 10肋眼肌面积得到的瘦肉生长指数为 :去势公猪 2 56g/d ;母猪 2 72g/d ;公母平均 2 64g/d。将瘦肉生长指数、温度、饲养密度等参数输入NRC( 1998)模型得到的营养需要量估测值有一定实际意义 ,但在实践中的应用情况有待进一步评估验证  相似文献   

7.
The equations developed by Hankins and Howe (1946, HH), Marcondes et al. (2010, M10), Marcondes et al. (in press, M11) and Valadares Filho et al. (2006, V6) were evaluated to predict the body composition from the 9–10–11th rib cut in Nellore bulls. The evaluated equations estimated the physical and the carcass chemical composition, the empty body chemical composition and the noncarcass chemical composition. Thirty-seven Nellore bulls (14±1 months old initially) with shrunk body weight of 259±24.9 kg were used in this experiment. The bulls were randomly divided into three groups: five bulls to the reference group, four bulls were fed at maintenance level and twenty-eight bulls were fed ad libitum. The bulls fed ad libitum were separated into four groups, one of which was slaughtered every 42 days. The diet was composed of corn silage and concentrate (55:45). After slaughter, the 9–10–11th rib cut was dissected into muscle, fat and bone fractions. The remaining carcass was similarly dissected. The others parameters that were evaluated as partial predictors included the empty body weight, the dressing percentage, the visceral fat percentage, the organ and viscera percentage and the composition of the noncarcass components. The values estimated with prediction equations were compared to the observed values. The equations obtained by M11 predicted correctly the carcass physical composition. However, the muscle and fat tissues were under- and overestimated, respectively, by HH. Some constituents of the noncarcass components can be predicted from equations developed by M10. The equations obtained by M10 predicted correctly the carcass and empty body chemical composition. The carcass water was underestimated by HH. The equations by V6 did not predict the carcass or empty body chemical composition. The carcass physical and chemical composition and empty body chemical composition can be predicted from the composition of 9–10–11th rib cut by equations obtained by Marcondes et al., 2010 and MarcondesPlease complete and update the reference given here (preferably with a DOI if the publication data are not known): Marcondes et al. (in press). For references to articles that are to be included in the same (special) issue, please add the words ‘this issue’ wherever this occurs in the list and, if appropriate, in the text. et al., while the composition of these components cannot be predicted by Hankins and Howe (1946) and Valadares Filho et al. (2006) in Nellore bulls.  相似文献   

8.
Carcass and live measurements of 45 barrows were used to evaluate the magnitude of ractopamine (RAC) treatment prediction biases for measures of carcass composition. Barrows (body weight = 69.6 kg) were allotted by weight to three dietary treatments and fed to an average body weight of 114 kg. Treatments were: 1) 16% crude protein, 0.82% lysine control diet (CON); 2) control diet + 20 ppm RAC (RAC16); 3) a phase feeding sequence with 20 ppm RAC (RAC-P) consisting of 18% crude protein (1.08% lysine) during wk 1 and 4, 20% crude protein (1.22% lysine) during wk 2 and 3, 16% crude protein (0.94% lysine) during wk 6, and 16% crude protein (0.82% lysine) during wk 6. The four lean cuts from the right side of the carcasses (n = 15/treatment) were dissected into lean and fat tissue. The other cut soft tissue was collected from the jowl, ribs, and belly. Proximate analyses were completed on these three tissue pools and a sample of fat tissue from the other cut soft tissue. Prediction equations were developed for each of five measures of carcass composition: fat-free lean, lipid-free soft tissue, dissected lean in the four lean cuts, total carcass fat tissue, and soft-tissue lipid mass. Ractopamine treatment biases were found for equations in which midline backfat, ribbed carcass, and live ultrasonic measures were used as single technology sets of measurements. Prediction equations from live or carcass measurements underpredicted the lean mass of the RAC-P pigs and underpredicted the lean mass of the CON pigs. Only 20 to 50% of the true difference in fat-free lean mass or lipid-free soft-tissue mass between the control pigs and pigs fed RAC was predicted from equations including standard carcass measurements. The soft-tissue lipid and total carcass fat mass of RAC-P pigs was overpredicted from the carcass and live ultrasound measurements. Prediction equations including standard carcass measurements with dissected ham lean alone or with dissected loin lean reduced the residual standard deviation and magnitude of biases for the three measures of carcass leanmass. Prediction equations including the percentage of lipid of the other cut soft tissue improved residual standard deviation and reduced the magnitude of biases for total carcass fat mass and soft-tissue lipid. Prediction equations for easily obtained carcass or live ultrasound measures will only partially predict the true effect of RAC to increase carcass leanness. Accurate prediction of the carcass composition of RAC-fed pigs requires some partial dissection, chemical analysis, or alternative technologies.  相似文献   

9.
Live animal and carcass data were collected from market barrows and gilts (n = 120) slaughtered at a regional commercial slaughter facility to develop and test prediction equations to estimate carcass composition from live animal and carcass ultrasonic measurements. Data from 60 animals were used to develop these equations. Best results were obtained in predicting weight and percentage of boneless cuts (ham, loin, and shoulder) and less accuracy was obtained for predicting weight and ratio of trimmed, bone-in cuts. Independent variables analyzed for the live models were live weight, sex, ultrasonic fat at first rib, last rib, and last lumbar vertebra, and muscle depth at last rib. Independent variables for the carcass models included hot carcass weight, sex of carcass, and carcass ultrasonic measurements for fat at the first rib, last rib, last lumbar vertebra, and muscle depth at last rib. Equations were tested against an independent set of experimental animals (n = 60). Equations for predicting weight of lean cuts, boneless lean cuts, fat-standardized lean, and percentage of fat-standardized lean were most accurate from both live animal and carcass measurements with R2 values between .75 and .88. The results from this study, under commercial conditions, suggest that although live animal or carcass weight and sex were the greatest contributors to variation in carcass composition, ultrasonography can be a noninvasive means of differentiating value, especially for fat-standardized lean and weight of boneless cuts.  相似文献   

10.
Data from 11 generations of a selection study were analyzed to estimate genetic correlations between boars and gilts, boars and barrows, and gilts and barrows for carcass traits in the Lacombe and Yorkshire breeds of swine. Genetic correlations were estimated to determine if genotype X sex interactions existed and to assess the need for separate genetic parameters for boars and gilts in selection response equations. Genotype X sex interactions were found for total carcass fat/kg of cold carcass weight, area of lean in the ham face/kg of cold carcass weight and percent lean in the ham face/kg of cold carcass weight. Carcass length, longissimus muscle area/kg of cold carcass weight percent ham of side and percent lean in the ham face did not have genotype X sex interactions. Selection based on pooled genetic parameters over sex were favored over selection based on separate genetic parameters regardless of the presence or absence of genotype X sex interactions.  相似文献   

11.
Liquid scintillation detection of potassium-40 was used to estimate pork carcass composition of 124 boars, barrows and gilts. Pigs were fed to five live weights (23, 45, 68, 91 and 114 kg) and 40K emissions were determined on live pigs in a whole body counter (WBC) equipped with a two-pi liquid scintillation detector. Then, pigs were slaughtered conventionally and the right side of each carcass was weighed, 40K emissions of this carcass side was determined in the WBC and total grams of potassium were calculated. The right side of each carcass was ground, sampled and analyzed for fat, protein, moisture and potassium. Fat, protein, moisture and overall potassium percentage means were 23.9 +/- 7.2, 16.5 +/- .94, 57.0 +/- 6.5 and .25 +/- .02, respectively. Whole body counter carcass potassium was highly correlated (P less than .01) to chemically determined carcass potassium (r = .70). Percentage of fat, protein and moisture prediction equations were formed by stepwise regression using the linear, quadratic and interactive effects of live animal and carcass side weight. Whole body counter live animal and carcass potassium and sex were utilized as independent variables. Carcass weight and 40K determined potassium of the carcass explained more of the variation in carcass composition than did live animal weight and 40K determined potassium of the live animal.  相似文献   

12.
This study was conducted to validate the 9-11th rib cut to estimate the chemical composition of the carcass and of the empty body weight (EBW) of Zebu cattle. Nineteen Zebu steers with initial body weight of 266.5±32.2 kg were used. Four steers were slaughtered at the beginning to compose the reference group; three were fed at maintenance level, and the remaining were allotted to different planes of nutrition (5.0%, 35.0% and 65.0% concentrate levels in the diets, DM basis). The 9-11th rib cuts and half of the carcasses were dissected and the weights of fat, muscle and bone tissue were recorded. The components fat, muscle and bone tissue from the 9-11th rib cut and from the half carcass were sampled and chemical analysis of fat, protein, water, ash and minerals determined. The 9-11th rib cut satisfactorily estimated the physical composition of the carcass, but not the chemical composition. The 9-11th rib cut appropriately estimated the chemical composition of the carcass in terms of protein, water, ash and macro mineral content. For the percentage of fat and Ca, an over- and underestimation of 7.84% and 13.34%, respectively, were detected. Regression equations were fitted to estimate the percentage of fat and Ca in the carcass, and that of protein, water and ash in the whole empty body.  相似文献   

13.
Growth, development and body composition in three genetic stocks of swine   总被引:5,自引:0,他引:5  
Differences in growth, chemical body composition and visceral organ development were evaluated in three genetic stocks: Beltsville Highfat (HF) and Lowfat (LF) Duroc-Yorkshire composites and a Hampshire X Large White cross (CX). Ten sets of littermate barrows were used from each stock. One pig from each set was slaughtered at 10, 17 and 24 wk of age. After slaughter, each pig was dissected into three fractions: carcass, head and feet, viscera and blood. Backfat was measured at three locations and visceral organs were weighed separately. Each fraction was frozen, ground, sampled and analyzed in duplicate for protein, fat, water and ash. The CX pigs were heaviest at all ages and contained the most fat-free mass (FFM). The HF pigs were smallest and contained the most fat, while LF pigs tended to be intermediate. The LF pigs deposited a greater proportion of weight in head and feet and a greater proportion of total FFM in the carcass than HF and CX pigs. Estimated allometric growth coefficients for non-fat chemical components relative to empty body weight (EBWT) were lower for HF than LF and CX, which were similar. Coefficients for fat were similar among stocks yet intercepts differed widely. Relative to total FFM, water increased at a faster rate and ash a slower rate in CX pigs compared to HF and LF. Growth coefficients were calculated for internal organs relative to EBWT. Coefficients for organs of the digestive tract were not different among stocks. However, significant differences among stocks were found for heart, lung, spleen and liver that were not explained by differences in body composition.  相似文献   

14.
Carcass characteristics, meat quality traits, and sensory attributes were evaluated in late-finishing barrows and gilts, weighing between 100 to 130 kg of BW, fed 0, 5, or 7.4 mg/kg of ractopamine hydrochloride (RAC) for the final 21 to 28 d before slaughter. Carcass data were collected from carcasses from barrows and gilts (n = 168), and all primal cuts from the right sides of these carcasses were fabricated to calculate primal yields as a percentage of the HCW. Subjective (National Pork Producers Council and Japanese) color, firmness, and marbling scores were determined on the LM of each loin and the semimembranosus muscle (SM) of the ham, whereas the moisture, extractable lipid, Warner-Bratzler shear force (WBSF), and trained sensory evaluations (juiciness, tenderness, and pork flavor) were measured on the LM samples only. Gilts produced heavier (P < 0.05) HCW than barrows, whereas feeding RAC increased (P < 0.05) HCW over pigs fed diets devoid of RAC. Carcasses from gilts also had greater (P < 0.02) primal cut and lean cut (P < 0.01) yields than barrows, and dietary inclusion of 5 mg/kg of RAC increased (P < 0.05) total boneless cut and lean cut yields when compared with carcass from pigs fed 0 or 7.4 mg/kg of RAC. Warner-Bratzler shear forces values were greater (P < 0.05) in the LM of gilts than barrows, but only juiciness scores were greater (P < 0.03) in LM chops from barrows than gilts. The LM from barrows had greater intramuscular lipid (P < 0.001) than the LM from gilts, and even though the LM from pigs fed 5 mg/kg of RAC had greater (P < 0.04) WBSF values than the LM from pigs fed 0 or 7.4 mg/kg of RAC, including RAC in the late-finishing diets for 21 or 28 d did not affect sensory panel rating or percentages of moisture and intramuscular lipid. In summary, addition of RAC in the late-finishing diet improved carcass and primal cut yields when it was fed at 5 and 7.4 mg/kg without altering pork quality traits regardless of whether RAC was fed for 21 or 28 d.  相似文献   

15.
Two experiments were conducted to determine the effect of substituting a more available dietary carbohydrate (CHO) for portions of corn or fat in the diet on growth performance, carcass traits, meat quality, and serum or plasma metabolites in growing-finishing pigs. A three-phase feeding program was used with corn-soybean meal diets formulated to provide 105% of the Lys requirement for barrows or gilts gaining 325 g of lean daily in Exp. 1 or gilts gaining 350 g of lean daily in Exp. 2. Diets were isoenergetic within experiments. All other nutrients met or exceeded suggested requirements. In Exp. 1, pigs were allotted to three dietary treatments (0, 7.5, or 15.0% sucrose), with three replications of barrows and three replications of gilts, and with three or four pigs per replicate pen; average initial and final BW were 25.2 and 106.7 kg. In Exp. 2, gilts were allotted to two dietary treatments (waxy [high amylopectin] or nonwaxy [75% amylopectin and 25% amylose] corn as the grain source), with five replications of four gilts per replicate pen; average initial and final BW were 37.7 and 100.0 kg. In Exp. 1, ADG and gain:feed ratio increased linearly (P < 0.02) as dietary sucrose increased. Minolta color scores, a* and b*, and drip loss (P < 0.06) also increased linearly with added sucrose. In Exp. 2, ADG, carcass weight and length, and the Minolta a* value were greater for pigs fed waxy corn (P < 0.08) than for those fed nonwaxy corn. Feed intake, longissimus muscle area, 10th-rib and average backfat thickness, dressing percentage, fat-free lean, percentage of lean and muscling, lean gain per day, total fat, percentage fat, lean:fat ratio, serum or plasma metabolites (Exp. 1: serum urea N; Exp. 2: serum urea N, and plasma nonesterified fatty acids, triacylglycerols, total and high-density lipoprotein cholesterol, insulin, and total protein), pH of the longissimus muscle, and subjective muscle scores (color, firmness-wetness, and marbling) were not affected by diet in either experiment. In summary, increasing availability of dietary CHO in growing-finishing pig diets improved growth performance, but it did not affect carcass traits.  相似文献   

16.
Backfat thickness, carcass length, area of M. longissimus and carcass composition were determined for 253 Large White barrows and gilts to examine the genetic influence on the main characteristics of the carcass and the correlation of these traits with body measurements and fat characteristics at 8 d of age. Pigs were born to 32 sows mated to the same boar. At the age of 8 d, weight, body length and backfat thickness and cellularity were measured. Pigs were slaughtered at 95 and 145 kg live weight. Heritability and genetic correlations were estimated with dam component of variance. Higher adiposity of carcasses was noted for barrows than for gilts and for those animals slaughtered at the heavier vs at the lighter weight. High h2 values were observed for carcass length (.89 +/- .29), area of the M. longissimus (.67 +/- .26) and backfat thickness at the gluteus medius (.77 +/- .28). Percentage of commercial cuts also had high heritabilities. Phenotypic and genetic correlations between the characteristics at 8 d and backfat thickness, carcass length and M. longissimus area at slaughter were not statistically significant. However, significant phenotypic correlations were found between cellularity of the outer and inner layers at 8 d and percentage of major cuts (e.g., rp = .27 with total fat cuts); cellularity of the outer layer at 8 d also was correlated genetically with carcass composition (e.g., rg = .50 +/- .19 with total fat cuts). Genetic predisposition toward intensive fat deposition was more clearly predicted by cellularity than by thickness of adipose tissue in newborn pigs.  相似文献   

17.
A total of 120 pigs [Duroc × (Landrace × Large White); initial average BW: 100.3 ± 2.5 kg] were used to investigate the effects of sex (barrows and gilts) and dietary total Lys restriction (7.0, 6.5, and 6.0 g·kg(-1)) on growth performance and carcass, meat, and fat characteristics. Pigs were intended for high-quality dry-cured ham from Spain (called Teruel ham), and a minimum fat thickness at the gluteus medius muscle (GM) is required (16 mm) for carcasses to be acceptable. Animals were slaughtered when they reached 129.0 ± 3.6 kg of BW. There were 6 treatments arranged factorially (2 sexes × 3 dietary Lys concentrations) and 4 replicates of 5 pigs per treatment. Barrows consumed more feed (P = 0.001) and tended to have less G:F (P = 0.06) than gilts. Carcasses from barrows were fatter (P = 0.001) and had heavier main trimmed lean cuts (P = 0.008) than gilts. A greater proportion of final acceptable carcasses for Teruel ham (P = 0.001) was observed in barrows than in gilts because of the greater percentage of carcasses that fulfill the minimum fat depth at GM required (P = 0.001). Meat from barrows had greater content of intramuscular fat (P = 0.02) than meat from gilts. Also, subcutaneous fat from barrows had less proportion of PUFA than fat from gilts (P = 0.02). A reduction in dietary Lys concentration decreased ADG (P = 0.004) and ADFI (P = 0.001) in pigs. In addition, backfat depth (P = 0.007) and fat at GM (P = 0.07) increased as dietary Lys decreased. The proportion of carcasses that fulfilled the minimum fat depth at GM required for Teruel ham increased as dietary Lys decreased in feed, but this effect was greater in gilts than in barrows (sex × Lys, P = 0.02). Meat and fat quality was not influenced by dietary treatment. We conclude that different feeding programs with different dietary Lys concentrations may be needed for barrows and gilts intended for production of dry-cured hams where a minimum carcass fat depth is required.  相似文献   

18.
The present study was conducted to determine the effects of different dietary protein levels and recombinant porcine somatotropin (rpST) administration on deposition rates of protein, fat, water, ash, and collagen in pigs. Ten groups of six barrows (30 kg BW) were restrictively fed (80% of ad libitum) one of five diets containing 11, 15, 19, 23, or 27% CP. Diets were isoenergetic and all contained equivalent amounts of lysine. Thirty barrows were treated daily with rpST (100 micrograms/kg) by i.m. injection; remaining pigs were treated with diluent for 42 d. At all levels of dietary protein intake, carcass and empty body accretion rates of protein, water, and ash were greater in rpST-treated pigs than in respective controls. The magnitude of change elicited by rpST was lowest in pigs consuming 11% CP. Administration of rpST resulted in a 34% decrease in the accretion rate of fat; increasing protein intake resulted in a linear decrease in fat accretion in control and rpST-treated pigs. Accretion rates of protein, water, ash, and fat were increased in viscera of rpST-treated pigs compared with respective controls; rates of visceral protein and water accretion were increased as dietary protein was increased, whereas deposition of fat was decreased in control and rpST-treated pigs. Administration of rpST resulted in an overall 66% increase in the utilization efficiency of dietary protein for empty body protein deposition. Protein intake had minimal effect on the concentration of collagen in the carcass; however, rpST treatment increased concentrations of total and soluble collagen by 30 and 33%, respectively. Recombinant pST had little influence on collagen crosslinking or maturation. Deposition rate of carcass collagen was increased 63% in rpST-treated pigs compared with respective controls.  相似文献   

19.
Two experiments were conducted to determine the effect of soy isoflavones on growth, meat quality, and carcass traits of growing-finishing pigs. In Exp. 1, 36 barrows (initial and final BW, 26 and 113 kg, respectively) were used and each treatment was replicated four times with three pigs each. The dietary treatments were 1) corn-soybean meal (C-SBM), 2) corn-soy protein concentrate (low isoflavones, C-SPC), or 3) C-SPC + isoflavones (isoflavone levels equal to those in C-SBM). Daily gain and ADFI were increased (P < 0.10) in pigs fed the C-SPC relative to pigs fed the C-SPC + isoflavone diet in the late finishing period; otherwise, growth performance was not affected (P > 0.10) by diet. Longissimus muscle area, 10th-rib fat depth, percentage muscling (National Pork Producers Council), 24-h pH and temperature, color, firmness-wetness, marbling, drip loss, and CIE L*, a*, and b* color values were not affected (P > 0.10) by diet. Dressing percentage, carcass length, weight and percentage of fat-free lean in ham and carcass, lean gain per day, lean:fat, and ham weight were increased (P < 0.10), and ham fat and percentage fat in ham and carcass were decreased (P < 0.10) in pigs fed the C-SPC + isoflavone diet compared with pigs fed the C-SPC diet. Pigs fed the C-SPC + isoflavone diet had similar (P > 0.10) carcass traits as pigs fed the C-SBM diet, except carcass length, percentage ham lean and thaw loss were greater (P < 0.10), and total ham fat was less (P < 0.10) in pigs fed the C-SPC + isoflavone diet. In Exp. 2, 60 gilts (initial and final BW, 31 and 116 kg, respectively) were used, and each treatment was replicated five times with four pigs per replicate. The treatments were 1) C-SBM, 2) C-SBM + isoflavone levels two times those in C-SBM, and 3) C-SBM + isoflavone levels five times those in C-SBM. Daily feed intake was linearly decreased (P < 0.10) in the growing phase and increased (P < 0.10) in the late finishing phases as isoflavone levels increased; otherwise, growth performance was not affected (P > 0.10) by diet. Diet did not affect (P > 0.10) carcass traits; however, CIE a* and b* color scores and drip loss were decreased (P < 0.06) as isoflavone levels increased. Soy isoflavones decreased fat and increased lean in barrows when fed within the dietary concentrations found in typical C-SBM diets but not when fed to gilts at concentrations above those present in C-SBM diets.  相似文献   

20.
Two experiments were conducted to determine the effect of dietary L-carnitine on growth performance and carcass composition of nursery and growing-finishing pigs. In Exp. 1,216 weanling pigs (initially 4.9 kg and 19 to 23 d of age) were used in a 35-d growth trial. Pigs were blocked by weight in a randomized complete block design (six pigs per pen and six pens per treatment). Four barrows and four gilts were used to determine initial carcass composition. L-Carnitine replaced ground corn in the control diets to provide 250, 500, 750, 1,000, or 1,250 ppm. On d 35, three barrows and three gilts per treatment (one pig/block) were killed to provide carcass compositions. L-Carnitine had no effect (P > 0.10) on growth, percentages of carcass CP and lipid, or daily protein accretion. However, daily lipid accretion tended to decrease and then return to values similar to those for control pigs (quadratic P < 0.10) with increasing dietary L-carnitine. In Exp. 2, 96 crossbred pigs (initially 34.0 kg BW) were used to investigate the effect of increasing dietary L-carnitine in growing-finishing pigs. Pigs (48 barrows and 48 gilts) were blocked by weight and sex in a randomized complete block design (two pigs/pen and eight pens/treatment). Dietary L-carnitine replaced cornstarch in the control diet to provide 25, 50, 75, 100, and 125 ppm in grower (34 to 56.7 kg; 1.0% lysine) and finisher (56.7 to 103 kg; 0.80% lysine) diets. At 103 kg, one pig/pen was slaughtered, and standard carcass measurements were obtained. Dietary L-carnitine did not influence growth performance (P > 0.10). However, increasing dietary carnitine decreased average and tenth-rib back-fat (quadratic, P < 0.10 and 0.05), and increased percentage lean and daily CP accretion rate (quadratic, P < 0.05). Break point analysis projected the optimal dosage to be between 49 and 64 ppm of L-carnitine for these carcass traits. It is concluded that dietary carnitine fed during the nursery or growing-finishing phase had no effect on growth performance; however, feeding 49 to 64 ppm of L-carnitine during the growing-finishing phase increased CP accretion and decreased tenth-rib backfat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号