首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
基于无线传感器网络的无人机农田信息监测系统   总被引:2,自引:7,他引:2  
移动无线传感器网络技术为农田信息监测提供了高效可行的技术手段。该研究根据南方农田地块相对分散、丘陵山地多,农情信息获取环境恶劣、采集数据时间周期长、网络分割成块的特点,利用UAV(unmanned aerial vehicle)具有的高效、灵活的特性,结合低功耗无线传感器网络,提出一种满足南方农田信息获取采样和数据业务需求的三层架构的无线传感器网络体系结构TUFSN(three-tire unmanned aerial vehicle farmland sensor network),其由数据采集层、中继传输层和移动汇聚层组成,该体系结构具有系统结构合理、可扩展性好、系统整体能耗低等特点。通过仿真可得中继节点RN(relay node)的缓存大小范围为3~13kB,系统试验中携带移动节点的UAV以1m/s的速度、15 m的高度在农田上空飞过,飞行过程中与地面中继节点通信并采集农田信息,UAV与地面中继节点的平均通信时长为26 s,仿真和试验表明,基于UAV的三层架构农田信息采集无线传感器网络很好地满足了南方地区农田信息数据采集和监控的生命周期长、传输数据可靠、覆盖面积广的要求。  相似文献   

2.
钾肥生产原卤井无线传感器网络监测系统   总被引:1,自引:1,他引:0  
针对钾肥生产中原卤井位置分散、人工巡检不及时、工作环境恶劣和采卤泵故障率高的现状,设计了基于无线传感器网络(wireless sensor network,WSN)的钾肥生产原卤井监测系统。系统包括集成CC2530和传感器构成的采集终端,结合ZigBee与GPRS技术完成数据汇总和远距离传输的汇聚终端和利用PHP与My Sql开发的用于数据接收、存储、显示,管理和决策支持的远程管理系统。系统测试表明监测系统能够可靠地监测采卤井,准确地反映采卤泵运行状态和采卤井液位。可靠性测试表明传感器节点有13.5个月的有效生存时间;在30 m通信范围内,发射功率大于1 d Bm时,节点丢包率小于3.6%,具有较高的通信可靠性。  相似文献   

3.
针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统。利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性。结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性。  相似文献   

4.
基于3S技术联合的农田墒情远程监测系统开发   总被引:6,自引:8,他引:6  
农田墒情信息是现代农业实施精准施肥、精确灌溉的重要科学依据。为了实现快速准确地采集墒情信息,研究开发了基于3S(GPS/GIS/GPRS)技术联合的农田墒情远程监测系统。该系统主要由农田信息监测网络节点和远程服务器组成,在小范围内由传感器节点基于ZigBee通讯协议组成无线传感器网络,在大尺度上通过网关节点集成GPS网络,利用GSM/GPRS网络实现与Internet的信息交互,完成了墒情数据的自动采集、无线传输和准确定位。设计了太阳能自供电的长寿命无线传感器节点和网关节点,开发了服务器端农田墒情信息管理系统软件,实现了Web方式下的参数远程设置和信息实时监测。该系统的设计开发为农田墒情信息监测和分析决策提供了有效的工具。  相似文献   

5.
针对传统无线传感网络(wireless sensor network,WSN)在数据采集和传输上能耗、传输时延和吞吐量等难以满足海水稻生长环境监测要求,该研究提出一种WSN网络介质访问层海水稻生长环境信息感知策略(medium access layer saline-alkali tolerant rice environmental data perception strategy,MAC-SREP),主要思想是将多无人机协同搜索区域模式映射为单无人机(unmanned arial vehicle,UAV)搜索模式,在此基础上,利用簇头节点的通信距离和UAV对地面的通信覆盖半径修正Voronoi图,再利用修正Voronoi图进行分簇,优化UAV的飞行路径;然后利用MAC层机制对UAV的数据包类型进行优先级调度和时隙分配,以保证网络资源的有效分配。仿真试验结果表明,MAC-SREP在多无人机-无线传感网络(multiple UAVs-WSN,mUAVs-WSN)的网络生命周期和网络吞吐量比单无人机-无线传感网络(single UAV-WSN,sUAV-WSN)分别提高25%和15%,端...  相似文献   

6.
温室无线传感器网络节点发射功率自适应控制算法   总被引:1,自引:1,他引:0  
为了提高无线数据传输的可靠性,基于无线传感器网络(wireless sensor network,WSN)的温室环境数据采集系统,采用试验的方法研究温室中不同环境下WSN节点之间通信的可靠性。在通信距离为5~40 m,存在作物、温室设施等遮挡影响,相对湿度为35%~80%的情况下,对丢包率和接收信号强度指示(received signal strength indication,RSSI)的关系进行研究,通过RSSI对节点间通信可靠性进行评价。在此基础上,提出WSN节点发射功率自适应控制算法。该算法以RSSI作为通信质量的评价因子,通过增大节点的发射功率来提高通信可靠性。测试结果表明,该算法能够根据当前通信状况,自适应地设置节点的发射功率,以尽可能小的发射功率将丢包率维持在1%左右。该算法对WSN在温室中的应用具有实用价值。  相似文献   

7.
智能视觉传感器技术因其低成本和图像高效采集优势成为当今无线视觉传感器网络(wireless vision sensor network,WVSN)的研究热点。该文在之前基于ARM平台S3C6410设计的低成本高分辨率农业视觉传感器(agricultural high resolution vision sensor,HRAVS)设计基础上,进行了网络和远程控制扩展,设计了一种基于WCDMA和Wi-Fi的高分辨率视觉传感器远程传输控制方案(vision sensor remote transmission control schema for the HRAVS,VSRTC)。使新型HRAVS节点可以利用有线、Wi-Fi、3G和4G等支持WVSN和农业物联网的应用。该文详细设计了VSRTC的应用体系结构、传输控制协议、应用软件。利用扩展的网络化视觉感知传感器,在华南农业农业大学试验农场部署了10个图像采集节点构成的WVSN,并开展了25d的运行测试,测试了新型节点的稳定性、图像采集与编码的性能,采集图像的平均耗时,以及在不同分辨率下的视频帧速率等。结果表明,该节点能够有效地支持命令响应式、周期响应式、视频流3种采集模式;在重传方案支持下所有节点指令丢失率在1%以内;在非联网状态下节点本地工作模式下,节点在1.3、2.0和3.2 Mpixel下采集图像的最短节点平均耗时分别约为6.2、8.2和11.1 s,最大视频帧速率分别为58.7、34.6、16.4帧/s;在全网络环境中,节点在1.3、2.0和3.2 Mpixel下采集图像的最短节点平均耗时分别约为17.6、26.9和49.6 s,最大视频帧速率分别为20.2、16.1、9.3帧/s。该方案对实时性要求不太高的农业领域来说,基本能满足其高分辨率图像和视频传输的需要。  相似文献   

8.
基于780MHz频段的温室无线传感器网络的设计及试验   总被引:1,自引:1,他引:0  
针对以往农用无线传感器网络(wireless sensor network,WSN)能耗与成本较高、传输性能不理想等问题,该文选用无线射频芯片AT86RF212、单片机C8051F920等,设计了一种工作在780 MHz中国专用频段且与IEEE802.15.4c标准兼容的无线传感器网络。该文简述了无线传感器网络节点结构,重点介绍了780 MHz无线传感器网络的硬件设计,并选择北方典型的日光温室作为试验研究环境,通过改变无线收发距离,对780、433和2 400 MHz频段的无线传感器网络节点的接收信号强度值(RSSI,received signal strength index)和平均丢包率(PLR,packet loss rate)进行了测试与分析。试验结果表明,3种不同频段的无线收发模块的接收信号强度值RSSI都随着收发距离的增大而减小。在温室内测试,收发距离小于20 m时,3种无线模块的RSSI值相近;收发距离为40~90 m时,7803 MHz模块比433 MHz模块的RSSI值略大,2.4 GHz的RSSI值最小。在温室内收发距离小于90 m的范围内,780 MHz模块和433 MHz模块的丢包率均为0,2.4 GHz模块的最高丢包率不超过5%。在温室间测试,收发距离为50~90 m时,780 MHz模块和433 MHz模块的RSSI值相近;收发距离大于90 m时,780 MHz模块比433 MHz模块的RSSI值大;2.4 GHz模块在温室间收发距离为50~140 m时的RSSI值均小于433、780 MHz。2.4 GHz模块在收发距离大于70 m时出现丢包现象,收发距离大于135 m时丢包率达到100%;温室间收发距离为140 m时,433 MHz模块的最大丢包率为11%,780 MHz的最大丢包率不超过6%。因此,在温室环境监测的应用中,780 MHz频段的无线传感器网络的传输性能表现最佳,且与433 MHz都明显优于2.4 GHz。  相似文献   

9.
少免耕播种机牵引阻力远程监测系统   总被引:4,自引:2,他引:2  
针对少免耕播种机牵引阻力的监测,该文提出了一种能够实时采集信号、无线传输数据、现场移动监测、远程同步监测的少免耕播种机牵引阻力监测系统。该系统通过在3点悬挂杆铰接处安装2维轴销测力传感器实现对其受力情况的实时检测。采用无线传感网络技术(wireless sensor network,WSN)实现传感器信号采集和数据短距离无线传输。采用嵌入式技术开发无线数据监测移动终端,实现牵引阻力的现场监测以及数据转发。利用Visual C++开发的远程监测软件,在远程计算机上实现牵引阻力的动态监测、实时显示、在线分析和批量存储。经计量,该系统模拟量检测最大误差为4 mV,线性度为0.04%。田间试验表明:系统实现了少免耕播种机牵引阻力的现场移动监测以及远程同步监测,系统使用方便并降低了田间测试的复杂程度。  相似文献   

10.
基于ZigBee和PDA的农田信息无线传感器网络   总被引:7,自引:4,他引:3  
为了实现农田信息的实时采集、处理与可视化,缩短数据采集和处理间的时差,开发了基于ZigBee和PDA的农田信息无线传感器网络。系统由集成ZigBee协调器的PDA和带传感器的路由节点组成。通过无线传感器网络,用户手持PDA可实时动态访问田间信息,并控制传感器的供电电源开关,以节省功耗。采集的田间信息包括土壤水分、土壤温度、土壤电导率、空气温湿度。其中土壤温度、空气温湿度传感器为数字式传感器,土壤水分、土壤电导率传感器为模拟传感器。节点通信距离试验表明,正常工作条件下,40 m距离的丢包率只有0.092,满  相似文献   

11.
基于深度强化学习的农田节点数据无人机采集方法   总被引:1,自引:1,他引:0  
利用无人机采集农田传感器节点数据,可避免网络节点间多次转发数据造成节点电量耗尽,近网关节点过早死亡及网络生命周期缩短等问题。由于相邻传感器数据可能存在冗余、无人机可同时覆盖多个节点进行采集等特点,该研究针对冗余覆盖下部分节点数据采集和全节点数据采集,对无人机数据采集的路线及方案进行优化,以减轻无人机能耗,缩短任务完成时间。在冗余覆盖下部分节点数据采集场景中,通过竞争双重深度Q网络算法(Dueling Double Deep Q Network,DDDQN)优化无人机节点选择及采集顺序,使采集的数据满足覆盖率要求的同时无人机能效最优。仿真结果表明,该算法在满足相同感知覆盖率要求下,较深度Q网络(Deep Q Network,DQN)算法的飞行距离缩短了1.21 km,能耗减少27.9%。在全节点数据采集场景中,采用两级深度强化学习联合(Double Deep Reinforcement Learning,DDRL)方法对无人机的悬停位置和顺序进行优化,使无人机完成数据采集任务时的总能耗最小。仿真结果表明,单节点数据量在160kB以下时,在不同节点个数及无人机飞行速度下,该方法比经典基于粒子群优化的旅行商问题(Particle Swarm Optimization-Traveling Salesman Problem,PSO-TSP)算法和最小化能量飞行控制(Minimized Energy Flight Control,MEFC)算法的总能耗最少节约6.3%。田间试验结果表明,相比PSO-TSP算法,基于DDRL的数据采集方法的无人机总能耗降低11.5%。研究结构可为无人机大田无线传感器节点数据采集提供参考。  相似文献   

12.
农业生态环境的物理形态和结构复杂多样,对WSN(wireless sensor networks)的无线信号传输造成不同衰减影响。为确保无线传感器网络在农业环境中经济、合理、高效部署,有必要明确典型农业环境中无线传感节点间的有效传输距离。该文基于Shadowing信号衰减模型,利用当前通用的CC2530和CC2591无线通信模块,分别选定4种不同农业环境(湖泊、草地、农田、树林)开展单跳组网试验,通过设定不同距离测试传感器节点的接收信号强度指标(received signal strength indication,RSSI),分析不同环境中RSSI与传输距离间的变化特征。试验结果表明,所有测试环境获得的RSSI值与有效距离遵从Shadowing模型,其拟合度在0.9232~0.9846之间。通过对实测数据建立拟合模型,以接收节点的灵敏度为临界值,计算出湖泊、草地、农田、树林4种环境的理论传输距离分别为663.3,419.3,208.0和79.5 m,而实测有效传输距离与理论值之间的相对误差在22%~34%之间。从误差分布看,复杂环境的实测值更接近理论值,而特殊结构的复杂环境似对实际信号传输有增强作用。该文的研究方法和模型估算获得的信号衰减系数可为实际环境监测组网提供有益参考。  相似文献   

13.
[目的]为提高开发建设项目水土保持监测效率,实时全面反映施工期水土流失状况和水土保持防治效果。[方法]在大量水土保持监测实践工作基础上,根据水利部关于水土保持监测最新规程,利用高空遥感和无人机影像技术。[结果]根据开发建设项目水土保持监测信息管理系统功能需求,构建了包括数据采集、数据信息库、应用系统层、功能层、基础设施层等的水土保持监测信息管理系统,并针对6大业务系统分别进行了初步方案设计。[结论]该水土保持监测信息管理系统设计合理,可以提高监测精度,保证监测数据的科学性和准确性,为开展具体信息系统开发提供参考。  相似文献   

14.
基于微小型无人机的遥感信息获取关键技术综述   总被引:14,自引:13,他引:14  
近年来,基于微小型无人机的遥感信息获取技术广泛应用在农业领域。采用微小型无人机遥感信息平台获取农田作物信息,具有运行成本低、灵活性高以及获取数据实时快速等特点,是目前农田作物信息快速获取的主要方法之一,是精准农业发展的重要方向。该文主要对微小型无人机遥感技术平台的发展、遥感信息获取技术、遥感图像的处理与解析、以及微小型无人机遥感平台应用在作物信息监测和生产管理等方面进行了深入剖析,强调了遥感信息获取与解析技术的重要性和存在的问题,受微小型无人机飞行稳定性和载荷量的限制,如何实时快速准确地调整机载遥感传感器的姿态使被测目标始终处于监测视野中,并实现图像信息的远距离获取与传输,以及如何处理和解析无人机遥感系统获取高质量的遥感图像是微小型无人机遥感技术能否被广泛应用在各研究领域的关键技术。最后,提出了增强无人机飞行控制系统的高稳定性、遥感图像的精确获取及数据的实时传输和高精度的图像后处理方法,对作物信息监测技术的发展和应用具有重大意义,是实现大面积精准农业生产管理决策的重要依据。  相似文献   

15.
针对黄淮海两熟区传统精耕细作存在的土壤结构破坏、动力消耗过大和连续免耕存在耕层土壤紧实度增加、表层杂草养分富集等问题,该研究设计了4 a的"翻耕-免耕-深松-免耕"的组合耕作模式(Combine Tillage,CT),通过4 a的周期定位试验,以连续免耕(Continuous No-tillage,CN)和连续翻耕(Continuous Plouging,CP)为对照,运用综合评价法,对组合耕作模式的周期生产力进行综合评价,结果表明:土壤质量方面,CT处理可以提高土壤的结构质量,减小土壤容重,有效降低0~30cm土层土壤容重,平均容重比连续免耕和连续翻耕分别小0.089和0.125g/cm3;CT处理提高土壤养分质量,增加0~30 cm土层全氮、速效磷和速效钾含量,对碱解氮含量影响不显著,增加土壤有机碳含量,平均有机碳含量比CN处理和CP处理分别高0.36和0.61 g/kg,并且各层之间有机碳含量分布较均匀;CP处理破坏0~20 cm土壤结构,在20~30cm土层形成犁底层,增加土壤容重,并且只增加10~20cm土层有机碳含量,各层养分不均;CN处理虽未对土壤结构造成破坏,但只增加0~10 cm土层有机碳含量,使土壤养分在表层积累。投入产出方面,CT处理周期总投入与CN处理差异不显著,两者均显著低于CP处理,但CT处理粮食总产量和总产值显著高于CN处理和CP处理,组合耕作能够提高物质利用率、劳动生产率和产投比,节本增效显著。CT、CN和CP的周期生产力综合评价得分分别为4.85、3.8和1.7,CT处理得分显著高于CN处理和CP处理,说明组合耕作具有较高的周期生产力。该研究可为小麦-玉米两熟区耕作模式的优化提供参考,促进两熟区的生产力提升和节本增效。  相似文献   

16.
为了实现无人机飞行状态信息的自动化采集和性能评估,该文设计了基于 Labview 的无人机飞行状态实时监测评估系统,该系统利用传感器采集无人机的飞行状态信息:包括三轴姿态角、三轴角速度、三轴速度、三轴加速度、GPS经纬度及海拔高度、环境温度和气压等。无线传输模块将经过简单处理之后的信息传输至PC机,基于Labview建立的监测评估软件对这些数据进一步处理之后,实时图形化显示三轴姿态、飞行高度、二维轨迹、三维轨迹和航迹偏差;根据三轴姿态信息实时模拟无人机姿态,自动计算飞行里程,并自动保存所有数据。飞控手目视操控无人机的试验结果表明:平均航迹偏差高达5.2 m,定高飞行的平均高度偏差为0.9 m,横滚角和俯仰角波动幅度均在8°以内,整个测试过程中传感器温度下降了2℃。数据分析结果与系统输出结果一致,该系统运行稳定,输出结果可靠,能够用于实时监测、图形化显示、评估和记录无人机飞行状态信息,为无人机飞行性能的评估及飞控手的训练提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号