首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rate of approximately 0.2 kelvin per hour. This cooling rate requires a large-scale thermal event in the nebula, in contrast to the localized, transient heating events inferred for chondrule formation. In our model, mass accretion through the protoplanetary disk caused large-scale evaporation of precursor dust near its midplane inside of a few astronomical units. Gas convectively moved from the midplane to cooler regions above it, and the metal grains condensed in these parcels of rising gas.  相似文献   

2.
High temperatures in the early solar nebula   总被引:1,自引:0,他引:1  
Boss AP 《Science (New York, N.Y.)》1988,241(4865):565-567
One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 K to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.  相似文献   

3.
Ordinary chondrites, like carbonaceous chondrites, contain primordial noble gases mainly in a minor phase comprising 相似文献   

4.
Radio occultation measurements with Mariners 6 and 7 provided refractivity data in the atmosphiere of Mars at four points above its surface. For an atmosphere consisting predominantly of carbon dioxide, surface pressures between 6 and 7 millibars are obtained at three of the points of measurement, and 3.8 at the fourth, indicating an elevation of 5 to 6 kilometers. The temperature profile measured by Mariner 6 near the equator in the daytime indicates temperatures in the stratosphere about 100 degrees K warmer than those predicted by theory. The measurements of Mariner 6 taken at 79 degrees N at the beginning of polar night indicate that conditions are favorable for the condensation of carbon dioxide at almost all altitudes. Mariner 7 measurements taken at 58 degrees S in daytime and 38 degrees N at night also show that carbon dioxide condensation is possible at altitudes above about 25 kilometers. Measurements of the electron density in the ionosphere show that the upper atmosphere is substantially warmer than it was in 1965, possibly because of increased solar activity and closer proximity to the sun.  相似文献   

5.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

6.
Electron microprobe analyses of an extraordinarily large metal grain from the Murchison type 2 carbonaceous chondrite gave 0.24 mole percent silicon. Thermodynamic calculations show that this is a natural consequence of condensation of alloys from the solar nebular gas at a total pressure l0(-5) less, similar P(tot) < l0(-3) atmosphere, provided they failed to equilibrate with it after cooling to < 1200 kelvins.  相似文献   

7.
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.  相似文献   

8.
Solar carbon monoxide spectra indicate the existence of a cool (less than 4000 kelvin) component to the solar chromosphere coexisting with the hot, bright gas at 6000 to 7000 kelvin. However, both the existence and the location of the cool component have been controversial. New high-resolution spectra show that carbon monoxide goes into emission just beyond the limb, allowing it to be probed without photospheric contamination. The cool component has temperatures as low as 3000 to 3500 kelvin and appears to cover 50 to 85 percent of the quiet solar surface. There is a steep temperature rise to normal chromospheric temperatures at a height of 900 to 1100 kilometers. Large horizontal velocities are seen, suggesting that the cool component is maintained by the supersonic adiabatic expansion of upwelling gas in overshooting granules.  相似文献   

9.
The Copernicus Orbiting Astronomical Observatory was used to obtain measurements of Mars Lyman-alpha (1215.671-angstrom) emission at the solar minimum, which has resulted in the first information on atomic hydrogen concentrations in the upper atmosphere of Mars at the solar minimum. The Copernicus measurements, coupled with the Viking in situ measurements of the temperature (170 degrees +/- 30 degrees K) of the upper atmosphere of Mars, indicate that the atomic hydrogen number density at the exobase of Mars (250 kilometers) is about 60 times greater than that deduced from Mariner 6 and 7 Lyman-alpha measurements obtained during a period of high solar activity. The Copernicus results are consistent with Hunten's hypothesis of the diffusion-limited escape of atomic hydrogen from Mars.  相似文献   

10.
The Goddard high-resolution spectrograph aboard the Hubble Space Telescope has been used to produce interstellar abundance measures of gallium, germanium, arsenic, krypton, tin, thallium, and lead, the heaviest elements detected in interstellar gas. These heavy elements arise from stellar nuclear processes (slow- and rapid-process neutron capture) that are different from those that produce zinc and the lighter elements previously observed. These data allow investigators to study how the heavy elements chemically interact with interstellar dust and to compare interstellar heavy element abundances in the current galactic epoch to those present at the time of the formation of the solar system. For example, the data indicate that the abundance of atoms in interstellar dust cannot be explained by simple condensation models alone and must be heavily influenced by chemistry in the interstellar medium. Also, the data for some elements suggest that their true galactic cosmic abundances may be different from the "fossil" abundances incorporated into the solar system 4.6 billion years ago.  相似文献   

11.
Rare earth element (REE) data from two ordinary chondrite chondrules show distinct negative chondrite-normalized concentration anomalies of samarium, europium, and ytterbium. The peculiar patterns may be the result of REE gas/solid fractionation at an oxygen fugacity lower than has been assumed for the canonical solar nebula. We suggest that the two ordinary chondrite chondrules acquired the fractionated REE patterns by incorporation of highly reduced, ultrarefractory condensates in their precursors. This interpretation implies that high-temperature condensation processes occurred in nebular environments with a strong deficit in oxygen, such as regions with an enhanced carbon/oxygen ratio.  相似文献   

12.
The available compositional data on planets and satellites can be used to place stringent limits on the thermal environment in the solar nebula. The densities of the terrestrial planets, Ceres and Vesta, the Galilean satellites, and Titan; the atmospheric compositions of several of these bodies; and geochemical and geophysical data on the earth combine to define a strong dependence of formation temperature on heliocentric distance. The pressure and temperature dependences of the condensation process are separable in the sense that the variation of the deduced formation temperatures with heliocentric distance is insensitive to even very diverse assumptions regarding the pressure profile in the nebula. It is impossible to reconcile the available compositional data with any model in which the formation temperatures of these bodies are determined by radiative equilibrium with the sun, regardless of the sun's luminosity. Rather, the data support Cameron's hypothesis of a dense, convective solar nebula, opaque to solar radiation, with an adiabatic temperature-pressure profile.  相似文献   

13.
Burnett DS 《Science (New York, N.Y.)》2006,314(5806):1709-1710
Cometary particles returned by the Stardust Discovery Mission are primarily silicate materials of solar system origin. Some of the grains were formed at high temperatures close to the Sun, but then transported far out to the Kuiper belt region of the solar system before being incorporated in the comet.  相似文献   

14.
Theoretical and experimental support is presented for the hypothesis that many organic compounds may form under conditions of thermodynamic equilibrium. This possibility must be considered along with special effects of selective catalysts, radiation, and degradation from biological matter, in explaining the origin of organic compounds in carbonaceous chondrites. Similar considerations may apply to solar nebulas and planetary atmospheres. The equilibrium distribution of organic compounds at temperatures between 300 degrees K and 1000 degrees K and pressures of 10-(6) to 50 atm for the C-H-O system have been computed. At moderate temperatures and low pressures, conditions where graphite production is inhibited, aromatic compounds may form even in the presence of large excesses of hydrogen. Such conditions exist in the solar nebula and in the atmospheres of some of the major planets. Equilibrium concentrations of a large number of compounds at 1000 degrees K with nitrogen, sulfur, and chlorine added to the system have also been determined. In some cases, a limited equilibrium method is employed in which those few compounds which form with the most difficulty are excluded from the computations, while representatives of all other families of compounds are included. This approach is shown to be useful in the interpretation of certain experimental data in which complete equilibrium has not been attained. We have also found that gases, activated to the plasma state by a high-energy radio frequency field, recombine on cooling to yield product mixtures which are in qualitative agreement with those predicted by the equilibrium computations. We believe that such products can be profitably studied as if at a metastable limited equilibrium.  相似文献   

15.
Enhanced abundances of neutral potassium (K) in the atmosphere of Mercury have been found above the longitude range containing Caloris Basin. Results of a large data set including six elongations of the planet between June 1986 and January 1988 show typical K column abundances of approximately 5.4 x 10(8) K atoms/cm(2). During the observing period in October 1987, when Caloris Basin was in view, the typical K column was approximately 2.7 x 10(9) K atoms/cm(2). Another large value (2.1 x 10(9) K atoms/cm(2)) was seen over the Caloris antipode in January 1988. This enhancement is consistent with an increased source of K from the well-fractured crust and regolith associated with this large impact basin. The phenomenon is localized because at most solar angles, thermal alkali atoms cannot move more than a few hundred kilometers from their source before being lost to ionization by solar ultraviolet radiation.  相似文献   

16.
Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.  相似文献   

17.
Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.  相似文献   

18.
Plasma measurements were obtained with the Galileo spacecraft during an approximately 3.5-hour interval in the vicinity of Venus on 10 February 1990. Several crossings of the bow shock in the local dawn sector were recorded before the spacecraft passed into the solar wind upstream from this planet. Although observations of ions of the solar wind and the postshock magnetosheath plasmas were not possible owing to the presence of a sunshade for thermal protection of the instrument, solar wind densities and bulk speeds were determined from the electron velocity distributions. A magnetic field-aligned distribution of hotter electrons or ;;strahl' was also found in the solar wind. Ions streaming into the solar wind from the bow shock were detected. Electron heating at the bow shock, 相似文献   

19.
Two isolated solar wind disturbances about 5 minutes in duration were detected aboard the Russian spacecraft Phobos-2 upon its crossing the wake of the martian moon Deimos about 15,000 kilometers downstream from the moon on 1 February 1989. These plasma and magnetic events are interpreted as the inbound and outbound crossings of a Mach cone that is formed as a result of an effective interaction of the solar wind with Deimos. Possible mechanisms such as remanent magnetization, cometary type interaction caused by heavy ion or charged dust production, and unipolar induction resulting from the finite conductivity of the body are discussed. Although none of the present models is fully satisfactory, neutral gas emission through water loss by Deimos at a rate of about 10(23) molecules per second, combined with a charged dust coma, is favored.  相似文献   

20.
Conspicuous changes in gas composition were observed at a fumarole and a mineral spring just before the occurrence of an inland earthquake (magnitude, 6.8) in central Japan in September 1984; the fumarole and spring were 9 and 50 kilometers, respectively, from the earthquake's epicenter. Deep-seated fluids emitted as a result of the compressional stress of the earth tide had been observed previously at this mineral spring and at a lava lake in Hawaii. By analogy, the gas anomaly observed before the earthquake in Japan probably resulted from deepseated fluids being squeezed to the surface by the tectonic stress that caused the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号