首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent discovery of Trichinella zimbabwensis in farmed crocodiles (Crocodilus niloticus) of Zimbabwe and its ability to infect mammals, and the development of both T. zimbabwensis and Trichinella papuae in experimentally infected reptiles led to an investigation of Trichinella infection in saltwater crocodiles (Crocodylus porosus) and in wild pigs (Sus scrofa) of Papua New Guinea, to see if T. papuae also, is present in both cold- and warm-blooded animals. Of 222 crocodiles examined, 47 animals (21.2%), all from Kikori, Gulf Province, were positive for non-encapsulated larvae in the muscles. The greatest number of larvae was found usually in the biceps, with an average of 7 larvae/g. One isolate from a crocodile infected successfully both laboratory rats and mice. Of 81 wild pigs examined, 9 from Bensbach river area (Western Province) and 1 from Kikori area (Gulf Province) were positive for non-encapsulated larvae in the muscles. Trichinella larvae from both saltwater crocodiles and wild pigs have been identified by multiplex-PCR analysis as T. papuae. The sequence analysis of the region within the large subunit ribosomal DNA, known as the expansion segment V, has shown the presence of a molecular marker distinguishing T. papuae isolates of Bensbach river area from those of Kikori area. This marker could be useful to trace back the geographical origin of the infected animal. The epidemiological investigation carried out in the Kikori area has shown that local people catch young crocodiles in the wild and keep them in holding pens for several months, before sending them to the crocodile farm in Lae (Morobe Province). They feed the crocodiles primarily with wild pig meat bought at the local market and also with fish. These results stress the importance of using artificial digestion for routinely screening of swine and crocodiles, and of adopting measures for preventing the spread of infection, such as the proper disposal of carcasses and the adequate freezing of meat.  相似文献   

2.
In recent years, studies on Trichinella have shown that the host range is wider than previously believed and new Trichinella species and genotypes have been described. Three classes of vertebrates are known to act as hosts, mammals, birds and reptiles, and infected vertebrates have been detected on all continents but Antarctica. Mammals represent the most important hosts and all Trichinella species are able to develop in this vertebrate class. Natural infections with Trichinella have been described in more than 150 mammalian species belonging to 12 orders (i.e., Marsupialia, Insectivora, Edentata, Chiroptera, Lagomorpha, Rodentia, Cetacea, Carnivora, Perissodactyla, Artiodactyla, Tylopoda and Primates). The epidemiology of the infection greatly varies by species relative to characteristics, such as diet, life span, distribution, behaviour, and relationships with humans. The non-encapsulated species Trichinella pseudospiralis, detected in both mammals (14 species) and birds (13 species), shows a cosmopolitan distribution with three distinguishable populations in the Palearctic, Nearctic and Australian regions. Two additional non-encapsulated species, Trichinella papuae, detected in wild pigs and saltwater crocodiles of Papua New Guinea, and Trichinella zimbabwensis, detected in farmed Nile crocodiles of Zimbabwe, can complete their life cycle in both mammals and reptiles. To the best of our knowledge, T. papuae and T. zimbabwensis are the only two parasites known to complete their entire life cycle independently of whether the host is warm-blooded or cold-blooded. This suggests that these two Trichinella species are capable of activating different physiological mechanisms, according to the specific vertebrate class hosting them.  相似文献   

3.
The discovery of Trichinella species infecting poikilotherm vertebrates has opened new possibilities in the epidemiology of this parasite group. The aim of the present work was to investigate the infectivity of the two non-encapsulated species of Trichinella infecting both mammals and reptiles, Trichinella papuae and Trichinella zimbabwensis, for equatorial freshwater carnivore fishes. To this end, two species of piranhas, four Serrasalmus nattereri and four Serrasalmus rhombeus, were each inoculated per os with the two species of Trichinella larvae. Six days post infection (p.i.), one fish of each species inoculated with one of the two species of Trichinella was sacrificed. The intestines and celomatic cavities were searched for worms using dissection microscopy, and the presence of muscle larvae was evaluated by artificial digestion. The other 4 inoculated fish were sacrificed 60 days p.i. and similarly searched for the presence of worms. No larva or adult worms were detected in any organ or tissue at 6 or 60 days p.i. The lack of infectivity of T. papuae and T. zimbabwensis for fish suggests that the entozoic habitat of this animal does not represent a suitable environment for these two Trichinella species. More importantly, these data indicate that freshwater fishes, one of the food resources for crocodiles, caimans and alligators, are unlikely to play a role in the epidemiology of the known species of the genus Trichinella.  相似文献   

4.
Wild Nile crocodiles (Crocodylus niloticus) of various size classes were captured in the Okavango Delta, Botswana. Blood was collected from the post occipital sinus and used for the determination of a wide range of haematological and biochemical parameters. These values were compared between the sexes and between 3 size classes. The values were also compared with the limited data available from farmed Nile crocodiles, as well as from other wild Nile crocodiles. The Okavango crocodiles were comparatively anaemic, and had comparatively low total protein and blood glucose levels. There was a high prevalence of Hepatozoon pettiti infection, however, there was no significant difference in haematological values between the infected and uninfected crocodiles. The values reported here will be useful in diagnostic investigations in both zoo and farmed Nile crocodiles.  相似文献   

5.
Four young Nile crocodiles (Crocodylus niloticus) were infected with infective pentastome larvae obtained from naturally infected Mozambique bream, Oreochromis mossambicus, and red-breasted bream, Tilapia rendalli swierstrai in the Kruger National Park. At day 95 post infection one of the crocodiles died and three female and four male S. wedli were recovered from its lungs. One pair was found in copula but the uteri of the females were not yet developed. Males and females were of about equal size. After 226 d post infection the three remaining crocodiles were sacrificed. Two of these harboured no pentastomes but eight were taken from the lungs of the third. The sex ratio had shifted in favour of the females, seven females and one male being present. One of the females recovered from the crocodiles was placed in saline and produced 3,400 eggs. These were used to infect eight guppies, Poecilia reticulata. Within 31 d two infective stages of S. wedli had developed in one of the guppies thus completing the life-cycle of the pentastome. S. wedli recovered from experimentally infected final hosts were slightly smaller than those recovered from a wild-caught final host.  相似文献   

6.
Poxvirus in farmed Nile crocodiles   总被引:1,自引:0,他引:1  
In an outbreak of wart-like skin lesions in nine-month-old farmed Nile crocodiles (Crocodylus niloticus) the lesions were especially common on the head and neck but occurred on all parts of the body except the tail. Eosinophilic intracytoplasmic inclusion bodies were present in epithelial cells and further examination of the lesions by transmission electron microscopy revealed the presence of a poxvirus. An autogenous vaccine was produced from material from the lesions and in six vaccinated crocodiles the lesions healed more quickly than in unvaccinated controls.  相似文献   

7.
Since 1992, when the European Union Council Directive requires that wild boars (Sus scrofa) hunted in EU for commercial purpose should be examined for Trichinella, the infection has not been detected in wild boars from Belgium, despite serological evidence of the presence of anti-Trichinella antibodies in wildlife and previous reports of Trichinella larvae in this host species. In November 2004, Trichinella larvae were detected in a wild boar hunted near Mettet, Namur province (Southern Belgium). Larvae were identified as Trichinella britovi by polymerase chain reaction methods. This is the first report of the identification of Trichinella larvae from Belgium at the species level. The detection of T. britovi in wildlife in Belgium is consistent with findings of this parasite in other European countries and confirms the need to test game meat for Trichinella to prevent its transmission to humans.  相似文献   

8.
New patterns of Trichinella infection   总被引:3,自引:0,他引:3  
Human and animal trichinellosis should be considered as both an emerging and reemerging disease. The reemergence of the domestic cycle has been due to an increased prevalence of Trichinella spiralis, which has been primarily related to a breakdown of government veterinary services and state farms (e.g., in countries of the former USSR, Bulgaria, Romania), economic problems and war (e.g., in countries of the former Yugoslavia), resulting in a sharp increase in the occurrence of this infection in swine herds in the 1990s, with a prevalence of up to 50% in villages in Byelorussia, Croatia, Latvia, Lithuania, Romania, Russia, Serbia, and the Ukraine, among other countries. The prevalence has also increased following an increase in the number of small farms (Argentina, China, Mexico, etc.) and due to the general belief that trichinellosis was a problem only until the 1960s. The sylvatic cycle has been studied in depth at both the epidemiological and biological level, showing the existence of different etiological agents (Trichinella nativa, Trichinella britovi, Trichinella murrelli, Trichinella nelsoni) in different regions and the existence of "new" transmission patterns. Furthermore, the role of game animals as a source of infection for humans has greatly increased both in developed and developing countries (Bulgaria, Canada, Lithuania, some EU countries, Russia, USA, etc.). The new emerging patterns are related to non-encapsulated species of Trichinella (Trichinella pseudospiralis, Trichinella papuae, Trichinella sp.), infecting a wide spectrum of hosts (humans, mammals including marsupials, birds and crocodiles) and to encapsulated species (T. spiralis, T. britovi, and T. murrelli) infecting herbivores (mainly horses). The existence of non-encapsulated species infecting mammals, birds and crocodiles had probably remained unknown because of the difficulties in detecting larvae in muscle tissues and for the lack of knowledge on the role of birds and crocodiles as a reservoir of Trichinella. On the other hand, it is not known whether horse and crocodile infections existed in the past, and their occurrence has been related to improper human behavior in breeding. The problem of horse-meat trichinellosis is restricted to France and Italy, the only two countries where horse-meat is eaten raw, whereas mutton and beef have been found to be infected with Trichinella sp. only in China.  相似文献   

9.
The red fox (Vulpes vulpes) is considered one of the main reservoir of Trichinella spp. in Europe. As limited information on Trichinella infection in wildlife of Hungary is available, 2116 red foxes, representing more than 3% of the estimated fox population of the country, were screened to detect Trichinella larvae by a digestion method. Trichinella larvae from the 35 positive foxes were identified by a multiplex PCR as Trichinella britovi (30 isolates, 85.7%), Trichinella spiralis (4 isolates, 11.4%), and Trichinella pseudospiralis (1 isolate, 2.9%). The true mean intensity of T. britovi, T. spiralis and T. pseudospiralis larvae in lower forelimb muscles was 23.6, 3.5 and 13.5larvae/g, respectively. T. spiralis was detected only in the southern and eastern regions. The non-encapsulated T. pseudospiralis was recorded for the first time in Hungary. Although the overall true prevalence of Trichinella infection in foxes was only 1.8% (95% confidence interval, CI=1.5-2.1%), the spatial analysis reveals different risk regions. In the north-eastern counties bordering Slovakia and Ukraine (21% of the Hungarian territory), the true prevalence of Trichinella infection is significantly higher than that observed in other regions (6.0%, CI=4.8-7.1%). In the southern counties bordering Croatia, Serbia and Romania (41% of the Hungarian territory), the true prevalence of Trichinella infection is moderate (1.4%, CI=1.0-1.8%). In the north-western and central counties (38% of Hungarian territory), the prevalence of Trichinella infection is significantly lower (0.2%, CI=0.1-0.4%) than that of the other regions. Based on the statistical analysis and the evaluation of epidemiological data, none of the counties can be considered free of Trichinella infection. In the past decade, Trichinella infection has been detected only in few backyard pigs, and only few wild boar-related autochthonous infections in humans were described. Nevertheless, these results highlight the need of the maintenance of a strict monitoring and control programmes on Trichinella infection in farmed and hunted animals of Hungary.  相似文献   

10.
In order to evaluate the present epidemiological situation of Trichinella infection in wild animals in Hokkaido, Japan, red foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) , brown bears (Ursus arctos) , martens (Martes melampus), rodents and insectivores captured in Hokkaido were examined for muscle larvae by the artificial digestion method from 2000 to 2006. Foxes (44/319, 13.8%), raccoon dogs (6/77, 7.8%) and brown bears (4/126, 3.2%) were found to be infected with Trichinella larvae and all other animal species evaluated were negative. Multiplex PCR and DNA sequencing revealed that larvae from a fox captured in Otofuke, in south-eastern Hokkaido, were T. nativa, and larvae from 27 animals including 21 foxes, 2 raccoon dogs and 4 brown bears captured in western Hokkaido were Trichinella T9.  相似文献   

11.
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking 10 g of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value=1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region.  相似文献   

12.
Golden hamsters (Mesocricetus auratus) and Balb C mice were experimentally infected with Trichinella zimbabwensis to determine the effect of host age in the distribution of adult stages in the small intestines. The hamsters and mice were divided into two groups of young and old animals. Hamsters aged 90 days were designated as young and those aged 360 days were designated as old while mice of 30 days of age were designated as young and those aged 90 days as old. To recover the adult parasites of T. zimbabwensis, the small intestines of each animal were separated and divided into four equal parts and each part was slit open longitudinally. The contents were incubated in 0.85% saline for 4 h at 37 degrees C before the adult worms were recovered from the saline. They were fixed in 70% alcohol and counted under a dissecting microscope. In both young and old hamsters and mice, T. zimbabwensis adult worm counts were significantly higher (P < 0.05) in the second segment of the intestines thus invariably reflecting a significantly high count (P < 0.05) in the first (anterior) half of the small intestines. From this study it was demonstrated that host-age had no effect on the distribution of T. zimbabwensis adult worms in the different segments of the small intestines of golden hamsters and Balb C mice.  相似文献   

13.
The epidemiology of animal trichinellosis in China   总被引:2,自引:0,他引:2  
The epidemiology of animal trichinellosis in China based mainly upon original Chinese literature published between 1937 and 2004 is reviewed. The seroprevalence of Trichinella infection in herbivores was 0.7% (2/300) in cattle and 0.8% (4/500) in sheep. The prevalence of trichinellosis in naturally infected cattle was 1.2% (2/163). Trichinella larvae were detected in 1.4% (3/215) of sheep and in 2.1% (1/47) of beef cattle sold at markets. Canine trichinellosis was recorded in 13 Provinces, Autonomous Regions or Municipalities (P/A/M) and the average prevalence of the infection in dogs slaughtered in abattoirs was 16.2% (5654/34,983) ranging from 1.2% to 44.8%, with the highest prevalence located in northeast China. The prevalence in dog meat sold at markets was 3.5% (988/27,898) in 5 P/A. Feline Trichinella infection was reported in 10 P/A/M. The prevalence of Trichinella infection in rats varied from 1.1% (51/459) to 15.1% (50/332). Trichinella larvae were detected in 1.5% (9/587) of house rats (Rattus norvegicus) as well as in 0.8% (3/369) of wild rats (Apodemus chevrieri), and the infection was recorded also in other wildlife (foxes, bears, wild boar, weasels, raccoon dogs, muntjak and bamboo rats). Trichinella larvae were detected in 2.6% (4/156) of weasels (Mustela sibirica), 1.5% (2/135) of shrews (Tupaia belangeri) and 7.7% (1/13) of moles (Parascapter leucurus). All Trichinella isolates from domestic pigs were identified as T. spiralis. Some Trichinella isolates from dogs in north-eastern China were identified as T. nativa, which has muscle larvae that are highly resistant to freezing. Twenty-seven outbreaks of human trichinellosis associated with mutton, dog and game meat occurred in China between 1964 and 2004, but the quarantine of Trichinella larvae in such meat is not mandatory in China at present.  相似文献   

14.
The identification of sequence regions in the genomes of pathogens which can be useful to distinguish among species and genotypes, is of great importance for epidemiological, molecular, and phylogenetic studies. The 5S ribosomal DNA intergenic spacer region has been identified as a good target to distinguish among eight Trichinella species and genotypes. The recent discovery of two non-encapsulated species in this genus, Trichinella papuae and Trichinella zimbabwensis, which can infect both mammals and reptiles, has suggested analyzing their 5S rDNA. Amplification of the tandem repeats of the 5S rDNA intergenic region of encapsulated species of Trichinella shows a 751bp fragment, whereas the three non-encapsulated species show a fragment of 800bp with T. pseudospiralis showing an additional fragment of 522bp. Although the size of the 800bp PCR fragments of T. papuae and T. zimbabwensis are similar to that of T. pseudospiralis, there are differences in the 5S rDNA intergenic regions among the three non-encapsulated species. Phylogenetic analysis of the 5S rDNA intergenic regions shows a clustering together of the three non-encapsulated Trichinella species that is well separated from the encapsulated ones. In addition, a single PCR-based method allows distinguishing non-encapsulated and encapsulated species.  相似文献   

15.
Trichinellosis is a foodborne disease caused by the consumption of raw meat and raw meat-derived products from swine, horse and some game animals infected with nematode worms of the genus Trichinella. Between June 2006 and February 2011, 16 million domestic pigs and 0.22 million wild boars (Sus scrofa) were tested for Trichinella sp. in Hungary. Trichinella infection was not found in any pigs slaughtered for public consumption. Nevertheless, Trichinella spiralis was detected in four backyard pigs when trace back was done following a family outbreak. Trichinella infection was demonstrated in 17 wild boars (0.0077%). Larvae from wild boars were identified as Trichinella britovi (64.7%), T. spiralis (29.4%) and Trichinella pseudospiralis (5.9%). Although the prevalence of Trichinella sp. infection in wild boars and domestic pigs is very low, the spatial analysis reveals that the level of risk differs by region in Hungary. Most of the T. britovi infected wild boars (63.6%) were shot in the north-eastern mountain area of Hungary; whereas domestic pigs and wild boars infected with T. spiralis were detected only in the southern counties bordering Croatia and Romania. In the north-western and central counties, the prevalence of Trichinella infection seems to be negligible.  相似文献   

16.
A wild boar (Sus scrofa) from the island Usedom in Mecklenburg-Western Pomerania (north-east Germany) was detected as Trichinella-positive during routine meat inspection. Encapsulated and non-encapsulated larvae were detected in the muscle tissue by trichinoscopy. In the diaphragm, 922 larvae per g were detected by artificial digestion. Muscle larvae displayed two different sizes of about 700 and 1100 microm. By a multiplex PCR analysis, larvae with a large size were identified as Trichinella spiralis, whereas those of a smaller size were identified as Trichinella pseudospiralis. This is the first finding of a mixed infection of T. spiralis and T. pseudospiralis in a naturally infected animal and it supports the tendency of more frequent detection of the non-encapsulated species T. pseudospiralis in Europe.  相似文献   

17.
In Sweden, the prevalence of Trichinella infection in domestic pigs has greatly decreased since the 1970s, with no reports in the past 4 years. However, infected wild animals continue to be found. The objective of the present study was to identify the species of Trichinella present in animals of Sweden, so as to contribute to the knowledge on the distribution area and hosts useful for the prevention and control of this zoonosis. In the period 1985-2003, Trichinella larvae were detected in the muscles of 81/1800 (4.5%) red foxes (Vulpes vulpes), 1/6 (16.7%) arctic fox (Alopex lagopus), 1/7 (14.3%) wolf (Canis lupus), 10/200 (5.0%) lynxes (Lynx lynx), 4/8000 (0.05%) wild boars (Sus scrofa), and 27/66 x 10(6) (0.000041%) domestic pigs. All four Trichinella species previously found in Europe were detected (Trichinella spiralis, T. nativa, T. britovi and T. pseudospiralis). The non-encapsulated species T. pseudospiralis was detected in three wild boars from Holo (Stockholm area) and in one lynx from Froso (Ostersund area), suggesting that this species is widespread in Sweden. These findings are consistent with those of a study from Finland, both for the unexpected presence of T. pseudospiralis infection and the presence of the same four Trichinella species, suggesting that this epidemiological situation is present in the entire Scandinavian region. The widespread diffusion of T. pseudospiralis in the Scandinavian region is also important in terms of it potential impact on public health, given that human infection can occur and the difficulties to detect it by the trichinelloscopic examination.  相似文献   

18.
Trichinella pseudospiralis is a non-encapsulated species infecting both mammals and birds. In Italy, this parasite was reported only in two night-birds of prey of Central Italy. In January 2010, Trichinella larvae were detected in three wild boars (Sus scrofa) of two regions of Northern Italy by enzymatic digestion. The parasites were identified as T. pseudospiralis by multiplex-PCR. The first infected wild boar was hunted in the Emilia Romagna region and the other two infected wild boars were bred outdoors in a small family farm of the Friuli Venezia Giulia region. These new epidemiological data reinforce the role of the wild boar as the main reservoir of T. pseudospiralis in Europe.  相似文献   

19.
The aim of the study was to establish in which degree wild boars and red foxes are reservoir of Trichinella spp. in North-West Poland. Research was carried out between 1997 and 2004 on 505 foxes and 56,462 wild boars in muscle samples. The muscle samples were examined using the digestion method. The average prevalence rate of Trichinella spp. infection of foxes was 4.4 %. Large differences of the infection rate in wild boars were observed. In the years 1999-2001 Trichinella spp. larvae were observed in 58 animals (0.2 %) and between 2002 and 2004 the Trichinella spp. prevalence in 227 wild boars was 0.9 %, demonstrating that the animals were 5.1 times more often infected than in 1999-2001. The growth of red fox population after the oral vaccination against rabies was probably the cause of this phenomenon.  相似文献   

20.
Exotic reptiles originating from the wild can be carriers of many different pathogens and some of them can infect humans. Reptiles imported into Slovenia from 2000 to 2005, specimens of native species taken from the wild and captive bred species were investigated. A total of 949 reptiles (55 snakes, 331 lizards and 563 turtles), belonging to 68 different species, were examined for the presence of endoparasites and ectoparasites. Twelve different groups (Nematoda (5), Trematoda (1), Acanthocephala (1), Pentastomida (1) and Protozoa (4)) of endoparasites were determined in 26 (47.3%) of 55 examined snakes. In snakes two different species of ectoparasites were also found. Among the tested lizards eighteen different groups (Nematoda (8), Cestoda (1), Trematoda (1), Acanthocephala (1), Pentastomida (1) and Protozoa (6)) of endoparasites in 252 (76.1%) of 331 examined animals were found. One Trombiculid ectoparasite was determined. In 563 of examined turtles eight different groups (Nematoda (4), Cestoda (1), Trematoda (1) and Protozoa (2)) of endoparasites were determined in 498 (88.5%) animals. In examined turtles three different species of ectoparasites were seen. The established prevalence of various parasites in reptiles used as pet animals indicates the need for examination on specific pathogens prior to introduction to owners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号