共查询到12条相似文献,搜索用时 77 毫秒
1.
基于YOLO v5-MDC的重度粘连小麦籽粒检测方法 总被引:1,自引:0,他引:1
小麦籽粒检测在千粒质量计算及作物育种方面有着重要应用,重度粘连籽粒的有效检测是其关键。本研究设计了一种YOLO v5-MDC的轻量型网络用于重度粘连小麦籽粒检测。该网络在YOLO v5s检测网络的基础上,用混合深度可分离卷积(Mixed depthwise convolutional, MDC)模块进行改进,同时将MDC模块与压缩激励(Squeeze and excitation, SE)模块相结合,以达到在基本不损失模型精度的前提下减少模型参数的目的。YOLO v5-MDC网络将YOLO v5s特征提取网络骨干部分的卷积、归一化、激活函数(Convolution, Batch normal, Hardswish, CBH)模块替换为MDC模块,减少了模型的参数,经过500次迭代训练,模型的精确率P为93.15%,召回率R为99.96%,平均精度均值(mAP)为99.46%。根据模型在测试集上的检测效果,本研究探究了训练次数、不同光源与不同拍摄距离对模型检测结果的影响,统计结果表明,在绿色光源下模型检测精确率最高,为98.00%,在5 cm拍摄高度下图像的检测精确率最高,为98.60%... 相似文献
2.
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先将部分高效聚合网络模块(Efficient layer aggregation network, ELAN)替换成轻量级网络模块GhostNetV2添加到主干及颈部网络部分,实现网络参数精简化的同时也减少了通道中的特征冗余;其次将卷积和自注意力结合的注意力模块(Convolution and self-attention mixed model, ACmix)添加到MP模块中,平衡全局和局部的特征信息,充分关注特征映射的细节信息;最后使用WIoU(Wise intersection over union)作为损失函数,减少了距离、纵横比之类的惩罚项干扰,单调聚焦机制的设计提高了模型的定位性能。在水稻籽粒图像数据集上验证改进后的模型检测水平,实验结果表明,改进后的YOLO v7模型的mAP@0.5达96.55%,mAP@0.5:0.95达70.10%,训练模型参数量... 相似文献
3.
基于YOLO v7-ECA模型的苹果幼果检测 总被引:1,自引:0,他引:1
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention, ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2 557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision, mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,... 相似文献
4.
甜椒在生长发育过程中容易产生畸形果,机器代替人工对甜椒畸形果识别和摘除一方面可提高甜椒品质和产量,另一方面可解决当前人工成本过高、效率低下等问题。为实现机器人对甜椒果实的识别,提出了一种基于改进YOLO v7-tiny目标检测模型,用于区分正常生长和畸形生长的甜椒果实。将无参数注意力机制(Parameter free attention module, SimAM)融合到骨干特征提取网络中,增强模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)损失替换原损失函数CIOU(Complete intersection over union),加快模型收敛并降低损失值;使用SiLU激活函数代替原网络中的Leaky ReLU,增强模型的非线性特征提取能力。试验结果表明,改进后的模型整体识别精确度、召回率、平均精度均值(Mean average precision, mAP)mAP0.5、mAP0.5-0.95分别为99.1%、97.8%、98.9%、94.5%,与改进前相比,分别提升5.4、4.7、2.4、10.7个百分点,模型内存占用量为 10.6MB,单幅图像检测时间为4.2ms。与YOLO v7、Scaled-YOLO v4、YOLOR-CSP等目标检测模型相比,模型在F1值上与YOLO v7相同,相比Scaled-YOLO v4、YOLOR-CSP分别提升0.7、0.2个百分点,在mAP0.5-0.95上分别提升0.6、1.2、0.2个百分点,而内存占用量仅为上述模型的14.2%、10.0%、10.0%。本文所提出的模型实现了小体量而高精度,便于在移动端进行部署,为后续机械化采摘和品质分级提供技术支持。 相似文献
5.
笼养模式下鸡/蛋自动识别与计数在低产能鸡判别及鸡舍智能化管理方面具有重要作用,针对鸡舍内光线不均、鸡只与笼之间遮挡及鸡蛋粘连等因素导致自动计数困难的问题,本研究以笼养鸡只与鸡蛋为研究对象,基于YOLO v7-tiny提出一种轻量型网络YOLO v7-tiny-DO用于鸡只与鸡蛋识别,并设计自动化分笼计数方法。首先,采用JRWT1412型无畸变相机与巡检设备搭建自动化数据采集平台,获取2 146幅笼养鸡只图像用于构建数据集。然后,在YOLO v7-tiny网络基础上应用指数线性单元(Exponential linear unit, ELU)激活函数减少模型训练时间;将高效层聚合网络(Efficient layer aggregation network, ELAN)中的常规卷积替换为深度卷积减少模型参数量,并在其基础上添加深度过参数化组件(深度卷积)构建深度过参数化深度卷积层(Depthwise over-parameterized depthwise convolutional layer, DO-DConv),以提取目标深层特征;同时在特征融合模块引入坐标注意力机制(Coordina... 相似文献
6.
针对当前生猪规模化养殖过程中基于热红外技术的生猪体温测量效率低的问题,提出了一种基于改进YOLO v7的生猪群体体温检测方法。改进YOLO v7算法在Head层引入VoV-GSCSP结构,降低网络结构复杂度;使用内容感知特征重组(Content-aware reassembly of features,CARAFE)替换模型原始上采样算子,提高特征图放大后的品质,强化生猪头部区域有效特征;引入感受野增强模块(Receptive field enhancement module,RFE),增强特征金字塔对生猪头部特征的提取能力。本文改进YOLO v7算法对于生猪头部的检测精确率为87.9%,召回率为92.5%,平均精度均值(Mean average precision,mAP)为94.7%。与原始YOLO v7相比,精确率提高3.6个百分点,召回率提高7.0个百分点,mAP提高3.6个百分点。该方法首先自动检测生猪头部区域,再利用头部最大温度与耳根温度的高相关性,最终自动获取生猪体温。温度提取平均绝对误差仅为0.16℃,检测速度为222f/s,实现了生猪群体体温的实时精准检测。综合上述试验结果表明,该方法能够自动定位生猪群体的头部区域,满足生猪群体体温测定的高效和高精度要求,为群养生猪体温自动检测提供了有效的技术支撑。 相似文献
7.
为实现香梨自动化采摘,本文以YOLO v7-S为基础模型,针对果园中香梨果实、果叶和枝干之间相互遮挡,不易精准检测的问题,设计了一种轻量化香梨目标检测M-YOLO v7-SCSN+F模型。该模型采用MobileNetv3作为骨干特征提取网络,引入协同注意力机制(Coordinate attention,CA)模块,将YOLO v7-S中的损失函数CIoU替换为SIoU,并联合Normalized Wasserstein distance (NWD)小目标检测机制,以增强网络特征表达能力和检测精度。基于傅里叶变换(Fourier transform,FT)的数据增强方法,通过分析图像频域信息和重建图像振幅分量生成新的图像数据,从而提高模型泛化能力。实验结果表明,改进的M-YOLO v7-SCSN+F模型在验证集上的平均精度均值(mAP)、精确率和召回率分别达到97.23%、97.63%和93.66%,检测速度为69.39f/s,与Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在验证集上进行性能比较,其平均精度均值(mAP)分别提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86个百分点。此外,改进的M-YOLO v7-SCSN+F模型内存占用量与YOLO v8n和RT-DETR-R50检测模型对比减少16.47、13.30MB。本文提出的检测模型对成熟期香梨具有很好的目标检测效果,为背景颜色相近小目标检测提供参考,可为香梨自动化采摘提供有效的技术支持。 相似文献
8.
为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网络中的标准Conv,提高网络对目标区域特征的提取;然后,在Neck网络使用改进Efficient RepGFPN特征融合网络实现低层特征与高层语义信息的融合,使模型能够提取更丰富的特征信息;最后,采用EIoU损失函数替换CIoU损失函数,加快模型收敛速度,进一步提高模型准确率,实现对小麦小穗赤霉病的快速、准确识别。在自建的数据集上进行模型验证,结果表明,改进模型(OCE-YOLO v8s)对小麦小穗赤霉病的检测精度达到98.3%,相比原模型提高2个百分点;与Faster R-CNN、CenterNet、YOLO v5s、YOLO v6s、YOLO v7模型相比分别提高36、25.7、2.1、2.6、3.9个百分点。提出的OCE-YOLO v8s模型能有效实现小麦小穗赤霉病精确检测,可为大田环境下农作物病虫害实时监测提供参考。 相似文献
9.
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。 相似文献
10.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。 相似文献
11.
为使巡检机器人能够对体积小且密集、形态多变、数量多且分布不均的害虫进行高效精准识别,提出了一种基于改进YOLO v7的害虫识别方法。该方法将CSP Bottleneck与基于移位窗口Transformer(Swin Transformer)自注意力机制相结合,提高了模型获取密集害虫目标位置信息的能力;在路径聚合部分增加第4检测支路,提高模型对小目标的检测性能;将卷积注意力模块(CBAM)集成到YOLO v7模型中,使模型更加关注害虫区域,抑制背景等一般特征信息,提高被遮挡害虫的识别精确率;使用Focal EIoU Loss损失函数减少正负样本不平衡对检测结果的影响,提高识别精度。采用基于实际农田环境建立的数据集的实验结果表明,改进后算法的精确率、召回率及平均精度均值分别为91.6%、82.9%和88.2%,较原模型提升2.5、1.2、3个百分点。与其它主流模型的对比实验结果表明,本文方法对害虫的实际检测效果更优,对解决农田复杂环境下害虫的精准识别问题具有参考价值。 相似文献
12.
针对玉米种质资源遗传多样性丰富导致雄穗大小、形态结构及颜色呈现较大差异,无人机搭载可见光传感器相比地面采集图像分辨率低,以及图像中部分雄穗过小、与背景相似度高、被遮挡、相互交错等情况带来的雄穗检测精度低的问题,提出了一种改进YOLO v7-tiny模型的玉米种质资源雄穗检测方法。该方法通过在YOLO v7-tiny中引入SPD-Conv模块和VanillaBlock模块,以及添加ECA-Net模块的方式,增强模型对雄穗特征的提取能力。利用自建的玉米种质资源雄穗数据集,训练并测试改进模型。结果表明,改进YOLO v7-tiny的平均精度均值为94.6%,相比YOLO v7-tiny提升1.5个百分点,相比同等规模的轻量级模型YOLO v5s、YOLO v8s分别提升1.0、3.1个百分点,显著降低了图像中雄穗漏检及背景误检为雄穗的发生,有效减少了单穗误检为多穗和交错状态下雄穗个数误判的情况。改进YOLO v7-tiny模型内存占用量为17.8MB,推理速度为231f/s。本文方法在保证模型轻量化的前提下提升了雄穗检测精度,为玉米种质资源雄穗实时、精准检测提供了技术支撑。 相似文献