首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma disposition of fenbendazole (FBZ), oxfendazole (OFZ) and albendazole (ABZ); and the enantiospecific disposition of OFZ, and ABZSO produced were investigated following an oral administration (50 mg/kg) in dogs. Blood samples were collected from 1 to 120 h post-administration. The plasma samples were analysed by high performance liquid chromatography (HPLC). The plasma concentration of FBZ, OFZ, ABZ and their metabolites were significantly different from each other and depended on the drug administered. The sulphone metabolite (FBZSO2) of FBZ was not detected in any plasma samples and the parent molecule ABZ did not reach quantifiable concentrations following FBZ and ABZ administration, respectively. OFZ and its sulphone metabolite attained a significantly higher plasma concentration and remained much longer in plasma compared with FBZ and ABZ and their respective metabolites. The maximum plasma concentrations (Cmax), area under the concentration time curve (AUC) and mean residence time (MRT) of parent OFZ were more than 30, 68 and 2 times those of FBZ, respectively. The same parameters for ABZSO were also significantly greater than those of FBZSO. The ratio for total AUCs of both the parent drug and the metabolites were 1:42:7 for following FBZ, OFZ and ABZ administration, respectively. The enantiomers were never in racemic proportions and (+) enantiomers of both OFZ and ABZSO were predominant in plasma. The AUC of (+) enantiomers of OFZ and ABZSO was, respectively more than three and seven times larger than that of (-) enantiomers of both molecules. It is concluded that the plasma concentration of OFZ was substantially greater compared with FBZ and ABZ. The data on the pharmacokinetic profile of OFZ presented here may contribute to evaluate its potential as an anthelmintic drug for parasite control in dogs.  相似文献   

2.
The comparative plasma disposition kinetics of albendazole (ABZ), fenbendazole (FBZ) and oxfendazole (OFZ) following their oral administration (5 mg/kg) to adult sheep was characterized. Jugular blood samples were taken serially over a 144 h period and plasma was analysed by high performance liquid chromatography (HPLC) for ABZ, ABZ sulphoxide (ABZSO) and ABZ sulphone (ABZSO2) (ABZ treatment), and for FBZ, OFZ and FBZ sulphone (FBZSO2) (FBZ and OFZ treatments). While the ABZ parent drug was not detected at any time post-treatment, ABZSO and ABZSO2 were the analytes recovered in plasma, after oral administration of ABZ to sheep. The active ABZSO metabolite was the main analyte recovered in plasma (between 0.25 and 60h post-treatment), accounting for 71 % of the total AUC. FBZ, OFZ and FBZSO2 were the analytes detected in plasma following the oral administration of both FBZ and OFZ to sheep. Low concentrations of FBZ were found in plasma between 4 (FBZ treatment) or 8 h (OFZ treatment) and 72 h post-treatment. The plasma profile of each analyte followed a similar pattern after both treatments; OFZ being the main component detected in plasma. The plasma disposition of ABZ metabolites was markedly different to that of FBZ derivatives. ABZSO exhibited faster absorption and a higher Cmax than OFZ (both treatments). Furthermore, while ABZSO declined relatively rapidly in plasma reaching non-detectable concentrations at 60 h post-ABZ administration, OFZ was found in plasma for up to 120 (FBZ treatment) and 144 h (OFZ treatment). The extended detection of OFZ in plasma in both treatments correlated with the prolonged t1/2β (18 h) and mean residence time (MRT) (30–33 h) obtained for this metabolite compared to those of ABZSO (t1/2β= (7.0 h); MRT= 12.5 h). These differences between the disposition of ABZ and FBZ metabolites may account for differences in their patterns of efficacy and tissue residues.  相似文献   

3.
The plasma concentration profiles of oxfendazole (OFZ), fenbendazole (FBZ) and FBZ sulphone (FBZ.SO2) were measured followed intraruminal administration of OFZ at 5 mg kg-1 to Merino weaners fed either dry forage or grazed on pasture lucerne clover. Plasma concentrations of OFZ and FBZ were significantly lower in sheep given the dry forage.  相似文献   

4.
The effect of intraruminal administration of parbendazole (PBZ) on the flow rate of bile and the pharmacokinetic behaviour of oxfendazole (OFZ) was examined in sheep. PBZ given at 18, 9 and 4.5 mg/kg resulted in a dose-related reduction in bile flow rate which was also inversely related to changing concentration of PBZ and its metabolites in plasma. Co-administration of 4.5 mg PBZ/kg with 5.0 mg [14C]-OFZ/kg resulted in increased concentrations of fenbendazole (FBZ), OFZ and fenbendazole sulphone (FBZ-SO2) in plasma, although total 14C levels remained unchanged compared with that observed when OFZ alone was administered. The presence of PBZ also reduced biliary secretion of 14C by 22% and altered the relative proportions of OFZ metabolites in bile during the 72-h experimental period. The ratio of 4'-hydroxy-OFZ (OH-OFZ) to 4'-hydroxy-FBZ (OH-FBZ) changed from 7:1 in the absence of PBZ to approximately 1:1 in the presence of PBZ. There was no change in urinary or faecal 14C excretion. The PBZ-induced effects were temporary since the pharmacokinetic behaviour of OFZ given alone two weeks before was similar to that given two weeks after PBZ co-administration. It is suggested that the presence of PBZ temporarily slowed hepatic metabolism and biliary secretion of OFZ metabolites but concomitantly increased extra-biliary transfer of OFZ and/or its metabolites from plasma into the gastrointestinal tract. Elevated exposure of parasites in the gut wall to plasma-derived drug, coupled with higher concentrations of anthelmintically active OH-FBZ secreted in bile, could contribute to the previously reported increased efficacy of OFZ when co-administered with PBZ.  相似文献   

5.
Plasma levels of fenbendazole (FBZ) and its sulphoxide (OFZ) and sulphone (FBZ.SO2) metabolites were measured in goats and sheep during low-level administration of FBZ given by intraruminal infusion or formulated into a urea-molasses feed supplement block (UMB). In experiment 1, 6 goats and 6 sheep were offered UMB containing 0.5 g FBZ/kg (MUMB) and individual block consumption was measured daily for 18 days. In experiment 2, some of the same animals (n=4 for each species) received FBZ by intraruminal infusion at 1, 1.5 and 3 mg/kg liveweight per day for 7 days at each dosage. FBZ, OFZ and FBZ.SO levels were determined in plasma collected every 3 days in experiment 1 and on days 4, 5 and26 of each infusion period in experiment 2. In both experiments, higher equilibrium levels were observed for the three metabolites in sheep than in goats. Significant linear relationships were observed between the daily FBZ dosages and the plasma levels of the three metabolites in both species. The regression coefficients were significantly higher in sheep than in goats for FBZ and OFZ but not for FBZ.SO2, and they were also significantly higher during MUMB administration than during infusion for all three metabolites in both species. FBZ is a suitable anthelmintic for incorporation into a MUMB formulation for use in livestock production systems where responses to molasses urea supplementation have been demonstrated and gastrointestinal parasitism impairs productivity. The results indicate that target dose rates for goats should be 0.75 mg/kg per day compared with 0.5 mg/kg per day for sheep.Abbreviations ANOVA analysis of variance - FBZ fenbendazole - FBZ.SO2 fenbendazole sulphone - HPLC high-performance liquid chromatography - MUMB urea-molasses feed supplement block containing 0.5 g fenbendazole/kg - OFZ fenbendazole sulphoxide - UMB urea-molasses feed supplment block  相似文献   

6.
Fenbendazole (FBZ) was administered intraruminally at 5.0 mg/kg, containing a trace of [14C]-FBZ, to sheep fitted with a permanent bile duct cannula and the behaviour of FBZ and its metabolites examined in bile and plasma. Of the administered radiolabeled dose, 47% was secreted in bile of which 34% was accounted for as conjugated and 4% as unconjugated (free) metabolites. Hydroxylated oxfendazole (OH.OFZ) was the major biliary metabolite contributing 66%, and hydroxy-FBZ (OH.FBZ) 27%, of the total metabolites characterized. Small amounts of OFZ and hydroxy FBZ sulphone (OH. FBZ.SO2) were also present in bile. The rapid appearance of OH.OFZ in bile, even before maximum concentrations of OFZ occurred in plasma, indicated that sulphoxidation and hydroxylation was the major route of FBZ metabolism.
Following intraduodenal infusion of free biliary metabolites, FBZ and its metabolites rapidly appeared in bile indicating absorption from the small intestine. When conjugated metabolites were infused they continued to appear in bile for a further 15–20 h after cessation of infusion indicating that absorption of hydroxylated metabolites occurred largely after bacterial deconjugation in the large intestine. Approximately 40% of biliary metabolites were estimated to undergo enterohepatic reabsorption but they contributed minimally to the metabolite content in plasma. It is suggested that during the process of recycling, biliary metabolites make substantial contact with parasites in the mucosa of the small and large intestine thereby contributing to the anthelmintic activity of FBZ.  相似文献   

7.
Disposition of oxfendazole in goats and efficacy compared with sheep   总被引:1,自引:0,他引:1  
The disposition of intraruminally administered oxfendazole (OFZ) in goats was studied at 5, 10 and 20 mg kg-1. The area under the plasma concentration with time curve (AUC) increased with increasing dose but at a declining rate. AUC was lower after intra-abomasal compared with intraruminal administration. OFZ was less effective against drug resistant Trichostrongylus colubriformis in goats than in sheep but was of similar efficacy against drug resistant Haemonchus contortus in both host species. In the same experiment peak plasma levels of OFZ in goats were about half those in sheep given the same dose. Of 70 goats tested in the field, total rumen bypass occurred in 12 per cent and partial bypass in 67 per cent. Lower systemic availability due to bypass would be expected to reduce further anthelmintic efficacy in goats. From the results of these experiments a dose rate of 10 mg kg-1 is recommended for goats. When given at this rate as a divided dose at 12 hourly intervals over 24 hours, OFZ was significantly more effective than a single dose in reducing egg counts.  相似文献   

8.
A trial was conducted to determine the efficacy and pharmacokinetics of fehantel and ivermectin in six month-old red deer calves (C. eluphus). Five calves received febantel by mouth at 7.5 mg/kg, five received a subcutaneous injection of ivermectin at 200 microg/kg and five were controls. All calves were killed seven days later and total lung and gastrointestinal worm counts carried out. Febantel was 85 and 99.8% efficient in removing immature and mature Dictyocaulus viviparus, respectively, and ivermectin was 100% efficient in both cases. There was no gastro-intestinal nematodes in any of the treated calves, compared to an average of 619 in the control calves. The metabolism of febantel resulted in plasma levels of fenbendazole, oxfendazole and sulphone for which the common curves fitted by compartmental model peaked at values (standard errors)-of 0.46 (0.03), 0.41 (0.02) and 1.73 (0.07) mg/l after approximately five, nine, and thirteen hours and were undetectable at 30,72 and 120 hours respectively. There was considerable variation among animals in response to ivermectin. The fitted common curve had a peak plasma level of 15.8 (0.08) microg/l at 20 hours after injection, which had dropped to 7.9 (1.1) microg/l seven days after injection. It was estimated that after 15 days plasma levels of ivermectin would not be detectable. It is concluded that the injectable form of ivermectin tested is a highly efficient anthelmintic in deer, and that plasma levels persist for over a week after subcutaneous injection. Fehantel is very efficient against mature D. viviparus in deer, but its reduced efficiency against immature D. viviparus may relate to the deer;s ability to metabolise and excrete benzimidazoles more quickly than sheep and cattle.  相似文献   

9.
This study compared pharmacokinetic (PK) profiles in sheep dosed intravenously with three different concentrations of oxfendazole (OFZ). An in vitro plasma OFZ solubility study provided additional information on plasma saturation. For the PK study, 18 adult, parasite-free, female Suffolk cross sheep, allocated into three groups (n = 6), were treated intravenously, at a dose rate of 5 mg/kg bodyweight, with aqueous formulations containing at 4, 8 or 16% OFZ. Plasma drug concentrations were measured, for up to 72 h post-treatment, by a validated high performance liquid chromatography method with UV detection. OFZ and fenbendazole sulphone (FBZSO2) were the main metabolites detected in all three experimental groups. In animals given the 4% formulation, OFZ depleted according to a biexponential concentration vs. time curve. In contrast, those given 8 or 16% preparations produced atypical curves fitted by monoexponential equations. No statistically significant differences in area under concentration-time curves (AUC) were observed, but concentration-dependent differences in distribution and mean residence time (MRT) were evident. Compared with 4% OFZ, animals treated with 8 and 16% formulations had slower half-lives of metabolite formation, and lower AUC's, suggesting that OFZ sulphonation may have been modified. In vitro there was evidence of plasma saturation associated with 8 and 16% OFZ preparations. It is concluded that differences in PK profiles were related to OFZ solubility and/or tissue drug precipitation.  相似文献   

10.
Co-administration of piperonyl butoxide (PB) potentiates fenbendazole (FBZ) in small ruminants. The resultant increase in bioavailability of FBZ and its metabolite oxfendazole (OFZ) has important implications for the efficacy of these drugs against benzimidazole (BZD)-resistant strains of Teladorsagia circumcincta. This study evaluated the racemic (achiral) and enantiomeric (chiral) plasma disposition kinetics of OFZ and its metabolites after the co-administration of PB and OFZ in sheep. Six 6-8-month-old, parasite-free, female Dorset sheep (30-40 kg) were used in a two-phase crossover experiment. In phase I, three sheep received 30 mg/kg PB orally, followed by a single intravenous (i.v.) injection of OFZ at 5 mg/kg. The other three animals were treated similarly except that 5 mL of water replaced PB. In phase 2, treatments for the two groups were reversed and were given 14 days after the initiation of phase I. Three analytes OFZ, FBZ and fenbendazole sulphone (FBZSO(2)) were recovered in plasma up to 48 h post-treatment in both experimental groups. Achiral and chiral pharmacokinetic (PK) profiles for OFZ, after the co-administration of PB, were characterized by a significantly greater area under the concentration--time curve (AUC) and a longer mean residence time (MRT). Chiral OFZ distribution ratios were comparable in both treatment groups. Piperonyl butoxide treatment markedly influenced the plasma PK profiles for FBZ and FBZSO(2) following OFZ administration. Production of FBZ was enhanced as reflected by increased (> 60%) AUC, delayed T(max) and a significantly delayed (> 45%) elimination (t(1/2)(el)). Although AUC values for FBZSO(2) were not significantly different between groups, this metabolite was depleted more slowly from plasma (t(1/2)(el) > 60% and MRT > 42%) following PB treatment. This study demonstrated that PB co-administration is associated with an inhibition of OFZ biotransformation, as evidenced by the significantly higher plasma concentrations of OFZ and FBZ, and this could have important implications in terms of anti-parasite therapy against BZD-resistant parasite strains.  相似文献   

11.
Six nine-month-old red deer were injected intramuscularly with a long-acting injectable solution of oxytetracycline (“Terramycin-LA”, Pfizer Ltd) at a dose rate of 20 mg/kg. Four similar control deer were injected with saline. There was no significant pain response to injection, and only minor palpable swellings at the injection site were observed in three oxytetracycline-treated and one control animal. No statistically significant changes in white blood cell numbers, blood fibrinogen, creatine Phosphokinase or glutamic oxaloacetic transaminase concentrations occurred as a result of Oxytetracycline administration up to seven days after injection. Mean plasma Oxytetracycline concentration reached a peak (4.68 mg/1) two hours after injection and declined to levels below assay sensitivity (0.3 mg/1) in five deer 72 hours after injection, and in all deer by 96 hours after injection. No gross lesions at the injection site were observed at slaughter 30 days after injection. There were traces of Oxytetracycline at the injection site muscle of two deer after 30 days, but residues were not detected in injection site muscle from the other four deer, or in any of the liver, kidney or other muscle specimens.  相似文献   

12.
AIM: To develop and validate a simple and sensitive method using liquid chromatography-mass spectrometry (LC-MS) for quantification of articaine, and its major metabolite articainic acid, in plasma of red deer (Cervus elaphus), and to investigate the pharmacokinetics of articaine hydrochloride and articainic acid in red deer following S/C administration of articaine hydrochloride as a complete ring block around the antler pedicle.

METHODS: The LC-MS method was validated by determining linearity, sensitivity, recovery, carry-over and repeatability. Articaine hydrochloride (40?mg/mL) was administered S/C to six healthy male red deer, at a dose of 1?mL/cm of pedicle circumference, as a complete ring block around the base of each antler. Blood samples were collected at various times over the following 12 hours. Concentrations in plasma of articaine and articainic acid were quantified using the validated LC-MS method. Pharmacokinetic parameters of articaine and articainic acid were estimated using non-compartmental analysis.

RESULTS: Calibration curves were linear for both articaine and articainic acid. The limits of quantifications for articaine and articainic acid were 5 and 10?ng/mL, respectively. Extraction recoveries were >72% for articaine and >68% for articainic acid. After S/C administration as a ring block around the base of each antler, mean maximum concentrations in plasma (Cmax) of articaine were 1,013.9 (SD 510.1) ng/mL, detected at 0.17 (SD 0.00) hours, and the Cmax for articainic acid was 762.6 (SD 95.4) ng/mL at 0.50 (SD 0.00) hours. The elimination half-lives of articaine hydrochloride and articainic acid were 1.12 (SD 0.17) and 0.90 (SD 0.07) hours, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE: The LC-MS method used for the quantification of articaine and its metabolite articainic acid in the plasma of red deer was simple, accurate and sensitive. Articaine hydrochloride was rapidly absorbed, hydrolysed to its inactive metabolite articainic acid, and eliminated following S/C administration as a ring block in red deer. These favourable pharmacokinetic properties suggest that articaine hydrochloride should be tested for efficacy as a local anaesthetic in red deer for removal of velvet antlers. Further studies to evaluate the safety and residues of articaine hydrochloride and articainic acid are required before articaine can be recommended for use as a local anaesthetic for this purpose.  相似文献   

13.
Monepantel (MNP) is a novel anthelmintic compound launched into the veterinary pharmaceutical market. MNP is not licenced for use in dairy animals due to the prolonged elimination of its metabolite monepantel sulphone (MNPSO2) into milk. The goal of this study was to evaluate the presence of potential in vivo drug‐drug interactions affecting the pattern of milk excretion after the coadministration of the anthelmintics MNP and oxfendazole (OFZ) to lactating dairy cows. The concentrations of both parent drugs and their metabolites were measured in plasma and milk samples by HPLC. MNPSO2 was the main metabolite recovered from plasma and milk after oral administration of MNP. A high distribution of MNPSO2 into milk was observed. The milk‐to‐plasma ratio (M/P ratio) for this metabolite was equal to 6.75. Conversely, the M/P ratio of OFZ was 1.26. Plasma concentration profiles of MNP and MNPSO2 were not modified in the presence of OFZ. The pattern of MNPSO2 excretion into milk was also unchanged in animals receiving MNP plus OFZ. The percentage of the total administered dose recovered from milk was 0.09 ± 0.04% (MNP) and 2.79 ± 1.54% (MNPSO2) after the administration of MNP alone and 0.06 ± 0.04% (MNP) and 2.34 ± 1.38% (MNPSO2) after the combined treatment. The presence of MNP did not alter the plasma and milk disposition kinetics of OFZ. The concentrations of the metabolite fenbendazole sulphone tended to be slightly higher in the coadministered group. Although from a pharmacodynamic point of view the coadministration of MNP and OFZ may be a useful tool, the presence of OFZ did not modify the in vivo pharmacokinetic behaviour of MNP and therefore did not result in reduced milk concentrations of MNPSO2.  相似文献   

14.
Swamp buffalo (Bubalus bubalis) and Droughtmaster cattle (Bos indicus × B. taurus), fitted with gastrointestinal cannulae, were dosed intraruminally with fenbendazole at 7.5 mg/kg liveweight, together with a chromium oxide capsule and a pulse dose of NaCoEDTA, to estimate the flow dynamics of the digesta in the rumen and duodenum. The concentrations of fenbendazole (FBZ) metabolites were measured in plasma and duodenal fluid collected over 120 h. In plasma, significantly lower peak concentrations and earlier disappearance of FBZ and its sulphoxide (OFZ) metabolite were observed in buffalo, which considerably reduced systemic availability in comparison with cattle. The availability of OFZ in the duodenal fluid of buffalo was significantly lower, whereas FBZ disposition was similar to that in cattle. The turnover rate of fluid in the rumen was higher in buffalo than in cattle, while the flow parameters for other digesta were similar in the two species. It is concluded that the decreased absorption of drug in buffalo was attributable to the shorter residence time of the dose in the rumen, and probably in the entire gastrointestinal tract. This may reduce the efficacy of treatment and indicate the need for higher dose rates for benzimidazole anthelmintics in buffalo than in cattle.Abbreviations AAS atomic absorption spectroscopy - AUC area under the concentration-versus-time curve - C max maximum concentration - FBZ fenbendazole - FBZ.SO2 fenbendazole sulphone - HPLC high-performance liquid chromatography - OFZ fenbendazole sulphoxide  相似文献   

15.
Six nine-month-old red deer were injected intramuscularly with a long-acting injectable solution of oxytetracycline (Terramycin-LA, Pfizer Ltd) at a dose rate of 20 mg/kg. Four similar control deer were injected with saline. There was no significant pain response to injection, and only minor palpable swellings at the injection site were observed in three oxytetracycline-treated and one control animal. No statistically significant changes in white blood cell numbers, blood fibrinogen, creatine phosphokinase or glutamic oxaloacetic transaminase concentrations occurred as a result of oxytetracycline administration up to seven days after injection. Mean plasma oxytetracycline concentration reached a peak (4.68 mg/l) two hours after injection and declined to levels below assay sensitivity (0.3 mg/l) in five deer 72 hours after injection, and in all deer by 96 hours after injection. No gross lesions at the injection site were observed at slaughter 30 days after injection. There were traces of oxytetracycline at the injection site muscle of two deer after 30 days, but residues were not detected in injection site muscle from the other four deer, or in any of the liver, kidney or other muscle specimens.  相似文献   

16.
The kinetic disposition of [14C]-oxfendaEole (OFZ) and its metabolites, fenben-dazole (FBZ) and fenbendazole sulphone (FBZ.SO2), in plasma and abomasal fluid were determined in Merino sheep and Angora goats before and during infection with Trichostrongylus colubriformis and Haemonchus contortus. The systemic availability (area under the plasma curve, AUC) of OFZ was significantly lower in goats (13.5 μg.h/ml) than in sheep (22.2 μg.h/ml) and was reduced with infection in goats (5.6 μg.h/ml) and sheep (15.1 μg.h/ml). The elimination of plasma [l4C] was faster in goats than in sheep. The responses observed for [14C] were a reflection of the behaviour of OFZ. The concentration of OFZ and metabolites in abomasal fluid were similar in both species in the absence or presence of infection. However, as the mean flow rate of abomasal fluid was slower in goats (240 ml/h) than in sheep (488 ml/h), only 7% of the dose passed the pylorus in abomasal fluid of goats compared with 14% in sheep. The presence of gastrointestinal nematodes generally increased abomasal fluid flow rate but neither species nor infection had any effect on the rate or extent of [14C] excretion in urine or faeces. It is suggested that goats possess a faster hepatic metabolism than sheep resulting in more rapid elimination of OFZ.  相似文献   

17.
REASONS FOR PERFORMING THE STUDY: The study of novel pharmacological strategies to control parasitism in horses is required since many parasite species have developed resistance to anthelmintic drugs. OBJECTIVES: To evaluate the effects of piperonyl butoxide (PB) (a metabolic inhibitor) on the plasma availability and enantiomeric behaviour of oxfendazole (OFZ) given orally to horses, and to compare the clinical efficacy of OFZ given either alone or co-administered with PB in naturally parasitised horses. METHODS: Fifteen naturally parasitised crossbred male ponies were allocated into 3 groups (n = 5) and treated orally as follows: Group I (control) received distilled water as placebo; Group II was dosed with OFZ (10 mg/kg bwt); and Group III was treated with OFZ (10 mg/kg bwt) co-administered with PB (63 mg/kg bwt). Jugular blood samples were obtained over 120 h post treatment. Three weeks after treatments, all experimental horses were subjected to euthanasia. RESULTS: The observed maximum plasma concentration (Cmax) and area under the concentration vs. time curve (AUC) values for OFZ increased 3- and 5-fold, respectively, in the presence of PB. The plasma concentration profiles of fenbendazole (FBZ), a metabolite generated from OFZ, were significantly lower after the treatment with OFZ alone (AUC = 0.8 microg x h/ml) compared to those obtained after the OFZ + PB treatment (AUC = 2.7 microg x h/ml). The enhanced pharmacokinetic profiles correlated with increased anthelmintic efficacy. The combination OFZ + PB showed 100% efficacy against mature nematode parasites. The efficacy against cyathostome L3 larvae increased from 94% (Group II) to 98.7% (Group III). Consistently, the number of L4 larvae recovered from OFZ + PB treated horses (Group III) (n = 146) was significantly lower (P<0.05) than that recovered from Group II (n = 1397). CONCLUSIONS: The use of PB as a metabolic inhibitor may be useful to enhance OFZ activity against mature and migrating larvae of different parasite species in horses. POTENTIAL RELEVANCE: Metabolic inhibitors may be used to enhance the activity of benzimidazole anthelmintics and extend the effective lifespan of benzimidazole drugs in the face of increasing resistance.  相似文献   

18.
Comparisons were made of the relative efficacy of ozfendazole (OFZ), administered to sheep at 5 mg/kg either as an oral drench, single intravenous injection or 12 and 24 divided intravenous injections over 24 and 48 hours, against benzimidazole-resistanthaemonchus contortus andTrichostrongylus colubriformis. A single intravenous injection was at least equally potent as the oral drench whilst the divided dose intravenous regimes significantly increased OFZ efficacy against both parasite species.These findings demonstrate that (i) absorbed drug is important for the efficacy of OFZ against nematodes in the abomasum and small intestine and may be more important than unabsorbed drug passing down the gastrointestinal tract, and (ii) the maintenance of plasma OFZ levels of approximately 2 g/ml by divided dose regime increased efficacy compared with that achieved with the same total dose given as a single administration.  相似文献   

19.
The ability of parbendazole (PBZ) to potentiate co-administered oxfendazole (OFZ) was investigated. Administration of a range (1.35-36.0 mg/kg) of doses of PBZ with 4.53 mg OFZ/kg demonstrated that significant potentiation occurred at 4.5 mg PBZ/kg. At 4.5 mg PBZ/kg, the area under the plasma OFZ concentration curve was about twice that obtained from oral administration of OFZ alone. When tested against benzimidazole-resistant Haemonchus contortus and Trichostrongylus colubriformis, the mixture of 4.5 mg PBZ + 4.53 mg OFZ/kg was significantly more effective than 4.53 mg OFZ/kg alone, and PBZ alone showed no activity against these resistant nematodes. The demonstration of PBZ-OFZ potentiation has indicated a means of obtaining a more effective use of currently available anthelmintics in the treatment of helminthiasis.  相似文献   

20.
Twelve adult female red deer (Cervus elaphus) were given 250 mg of ceftiofur sodium by intramuscular injection (i.m.) and ballistic implant in a crossover design. Blood samples were taken from an in-dwelling jugular catheter prior to drug administration and at 0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, and 72 h postadministration of the drug. Samples were centrifuged and plasma kept frozen at -70 degrees C until analysis for ceftiofur and active metabolites using an HPLC method. The pharmacokinetics of ceftiofur and metabolites after i.m. dosing and following ballistic implant were quite different. Absorption after i.m. injection was rapid; whereas following ballistic implant there was a lag-time until concentrations were detectable in plasma. The maximum concentration reached in plasma was higher following injection compared with ballistic implant, however the AUC calculated after ballistic implant was almost identical to the mean AUC found after i.m. dosing. The results indicate that i.m. administration of ceftiofur maintains adequate plasma levels for most susceptible bacterial pathogens for at least 12 h; therefore twice daily administration is needed in red deer. Ballistic implants produced plasma concentrations above the MIC for most bacterial pathogens from 4 to 24 h in most animals after administration; however, absorption of the drug was variable and some did not maintain effective concentrations for more than a few hours. Ceftiofur is a useful drug in red deer and twice daily i.m. administration dosing should allow treatment for susceptible bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号