首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protocol is described for non-destructive visualization and quantification of roots for relatively large core using computed tomography (CT) and computer codes developed to isolate and analyze the CT matrices. The scanner settings were optimized using a phantom core filled with different soil and materials (including root segments) of known geometry and orientation. CT parameters were optimized (130 kV peak voltage and 480 mAs), using a core 0.23×0.14 m diam. filled with a single grain sand scanned at a voxel resolution of 275×275×1000 μm. Quantitative attributes of the roots of chickpea 21 days after germination such as the number of root laterals, their volume, length, wall area, tortuosity and orientation are presented and compared with results obtained by destructive sampling. Results suggest the CT approach systematically underestimated root length compared to destructive sampling (difference reaching up to 10%). The average root segment length estimated by the non-destructive algorithm was 28.1 mm compared to 36 mm by destructive analysis. However, the non-destructive approach revealed details that are not possible to obtain with invasive techniques. For instance, the root laterals had an average tortuosity of 2.5 indicating that their length was 2.5 greater than the distance between their extremities.  相似文献   

2.
利用LF-NMR探讨冻融处理影响甘薯膨化产品品质的机理   总被引:6,自引:2,他引:4  
为探究冻融处理对甘薯变温压差膨化干燥产品品质影响的机理,应用低场核磁共振技术(low-field nuclear magnetic resonance,LF-NMR)研究了冻融后甘薯中水分存在形式和各组分含量,比较了冻融次数对甘薯膨化干燥产品硬度、色泽和多孔性等品质指标的影响。结果表明:冻融后甘薯LF-NMR自旋-自旋弛豫时间T2谱中出现4个水分峰,其横向弛豫时间分别为T21(0.25~0.55 ms)、T22(1~2.5 ms)、T23(5~12 ms)、T24(40~200 ms)。随着冻融次数增加,自由水含量(mT24)先增加后减少,结合最紧密的水含量(mT21)先减少后增加;干燥产品多孔性和复水性逐渐增大,ΔE逐渐变小,L*和硬度先减小后有稍许增大。相关性分析表明,多孔性与T24、mT23呈现显著正相关(P<0.05),相关系数分别为0.995、0.989;mT22与ΔE的相关系数为0.984。该研究为阐明冻融处理对果蔬变温压差膨化干燥品质变化机理分析提供了理论依据。  相似文献   

3.
The number of Enterobacteriaceae, with particular attention given to the presence of Escherichia coli and Klebsiella pneumoniae, was determined in hospital effluents and municipal wastewater after various stages of purification. The emission of these microorganisms to the ambient air near wastewater treatment plant (WWTP) facilities and to the river water, which is a receiver of the WWTP effluent, was also studied using fluorescence in situ hybridization (FISH) and cultivation methods. The number of Enterobacteriaceae determined by cultivation and fluorescence methods in different kinds of sewage sample ranged from 0.5?×?10(3) to 2.9?×?10(6)?CFU/ml and from 2.2?×?10(5) to 1.3?×?10(8) cells/ml, respectively. Their removal rates during treatment processes were close to 99?%, but the number of these bacteria in the WWTP outflow was quite high and ranged from 5.9?×?10(3) to 3.5?×?10(4)?CFU/ml and from 1.1?×?10(5) to 6.1?×?10(5) cells/ml, respectively. In the river water and the air samples, the number of Enterobacteriaceae was also high and ranged from 4.1?×?10(3) to 7.9?×?10(3)?CFU/ml and from 3 to 458?CFU/m(3), respectively. The numbers of these microorganisms obtained from fluorescence and cultivation methods were statistically and significantly correlated; however, the analysis of the studied samples indicated that the FISH method gave values up to 10(3)-fold times greater than those obtained by the cultivation method. From a sanitary point of view, this means that the number of viable fecal bacteria is systematically underestimated by traditional culture-based methods. Thus, the FISH proves to be a method that could be used to estimate bacterial load, particularly in air samples and less contaminated river water.  相似文献   

4.
1H NMR relaxometry is used in earth science as a non‐destructive and time‐saving method to determine pore size distributions (PSD) in porous media with pore sizes ranging from nm to mm. This is a broader range than generally reported for results from X‐ray computed tomography (X‐ray CT) scanning, which is a slower method. For successful application of 1H NMR relaxometry in soil science, it is necessary to compare PSD results with those determined from conventional methods. The PSD of six disturbed soil samples with various textures and soil organic matter (SOM) content were determined by conventional soil water retention at matric potentials between −3 and −390 kPa (pF 1.5–3.6). These PSD were compared with those estimated from transverse relaxation time (T2) distributions of water in soil samples at pF 1.5 using two different approaches. In the first, pore sizes were estimated using a mean surface relaxivity of each soil sample determined from the specific surface area. In the second and new approach, two surface relaxivities for each soil sample, determined from the T2 distributions of the soil samples at different matric potentials, were used. The T2 distributions of water in the samples changed with increasing soil matric potential and consisted of two peaks at pF 1.5 and one at pF 3.6. The shape of the T2 distributions at pF 1.5 was strongly affected by soil texture and SOM content (R2 = 0.51 − 0.95). The second approach (R2 = 0.98) resulted in good consistency between PSD, determined by soil water retention, and 1H NMR relaxometry, whereas the first approach resulted in poor consistency. Pore sizes calculated from the NMR data ranged from 100 μm to 10 nm. Therefore, the new approach allows 1H NMR relaxometry to be applied for the determination of PSD in soil samples and for studying swelling of SOM and clay and its effects on pore size in a fast and non‐destructive way. This is not, or only partly, possible by conventional soil water retention or X‐ray CT.  相似文献   

5.
Fourier transform infrared (FT-IR) microspectroscopy and low-field (LF) proton NMR transverse relaxation measurements were used to study the changes in protein secondary structure and water distribution as a consequence of aging (1 day and 14 days) followed by salting (3%, 6%, and 9% NaCl) and cooking (65 degrees C). An enhanced water uptake and increased proton NMR relaxation times after salting were observed in aged meat (14 days) compared with nonaged meat (1 day). FT-IR bands revealed that salting induced an increase in native beta-sheet structure while aging triggered an increase in native alpha-helical structure before cooking, which could explain the effects of aging and salting on water distribution and water uptake. Moreover, the decrease in T2 relaxation times and loss of water upon cooking were attributed to an increase in aggregated beta-sheet structures and a simultaneous decrease in native protein structures. Finally, aging increased the cooking loss and subsequently decreased the final yield, which corresponded to a further decrease in T2 relaxation times in aged meat upon cooking. However, salting weakened the effect of aging on the final yield, which is consistent with the increased T2 relaxation times upon salting for aged meat after cooking and the weaker effect of aging on protein secondary structural changes for samples treated with high salt concentration. The present study reveals that changes in water distribution during aging, salting, and cooking are not only due to the accepted causal connection, i.e., proteolytic degradation of myofibrillar structures, change in electrostatic repulsion, and dissolution and denaturation of proteins, but also dynamic changes in specific protein secondary structures.  相似文献   

6.
Water-binding properties of myofibrils extracted from porcine muscle, and added hemoglobin with and without exposure to H2O2, were characterized using low-field proton NMR T2 relaxometry. The effects of pH and ionic strength in the samples were investigated as pH was adjusted to 5.4, 6.2, and 7.0 and ionic strength was adjusted to 0.29, 0.46, and 0.71 M, respectively. The formation of dityrosine as a measure of oxidative protein cross-linking revealed a significant increase in dityrosine concentrations upon H2O2 activation. The formation of dityrosine was strongly pH-dependent and increased with decreasing pH. In addition, increased levels of thiobarbituric acid reactive substances were observed upon addition of H2O2, implying that lipid oxidation was enhanced, however, with a different oxidation pattern as compared to the myofibrillar proteins. Low-field NMR relaxation measurements revealed reduced T2 relaxation times upon H2O2 activation, which corresponds to reduced water-holding capacity upon oxidation. However, a direct relationship between degree of oxidation and T2 relaxation time was not observed with various pH values and ionic strengths, and further studies are needed for a complete understanding of the effect of oxidation on myofibrillar functionality.  相似文献   

7.
小麦灌浆过程籽粒水分变化的核磁共振检测   总被引:1,自引:5,他引:1  
花期至成熟期是小麦产量形成的关键时期,在这一时期麦穗的水分状态随着干物质的积累而呈现出独特的变化特征。为了揭示活体冬小麦灌浆过程的水分变化规律,利用核磁共振技术的无损检测特性,结合核磁共振质子密度加权成像和核磁共振T2弛豫谱分析,对小麦麦穗进行了连续活体检测。核磁共振质子密度加权成像结果表明,灌浆前期籽粒的水分不断增加,至花后15 d籽粒的水分含量达到最大值,此后小麦籽粒的水分逐渐减少。在此过程中,灌浆物质在籽粒中积累的顺序是由外向内、自上而下的。经核磁共振T2弛豫谱分析,麦穗中的水分可分为结合水、半结合水和自由水三种相态。从籽粒形成至完熟期麦穗不同相态的水分都表现为先增大后减小的特点,但涨落步调不尽相同,其中结合水含量的增长期最长,至蜡熟期结束时(花后33 d)才达到最大值。籽粒形成后麦穗总水分含量维持在较高水平,即使在籽粒干质量快增期(花后15 d至花后27 d),籽粒中干物质的迅速积累也并未导致水分含量的明显减小,单穗的总水分含量与最大水分含量相比仅仅减少了十分之一。花后30 d之后,随着颖片及穗轴逐渐变黄衰老和籽粒的脱水成熟,麦穗水分含量才急剧减小。小麦灌浆中期麦穗维持较高水分含量,说明水分在同化物积累过程中的重要作用。除了灌浆中期较高的水分含量,蜡熟期的快速脱水亦有利于营养物质的贮存并减少呼吸消耗,对于小麦产量的形成和稳定亦具有重要意义。  相似文献   

8.
Li  Liang  Qiu  Yuping  Huang  Jiexun  Li  Feili  Sheng  G. Daniel 《Water, air, and soil pollution》2014,225(12):1-10
With industrialization, great amounts of trace elements and heavy metals have been excavated and released onto the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples has been most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability, and efficiency of an X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison to the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method for measuring the total concentration of multi-elements simultaneously. Contrary to ICP-OES, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, decreased production of hazardous waste, and low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid, non-destructive screening method for contaminated soils, sediments, and biological samples containing high concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits for most trace elements as ICP-OES, but it may serve as a rapid screening tool for locating hot spots in uncontaminated field soils and sediments, such as in the US Department of Energy’s Oak Ridge site.  相似文献   

9.
宋平  徐静  马贺男  王成  杨涛  李娜 《农业工程学报》2016,32(17):274-280
为研究水稻种子浸种过程中内部水分流动情况,可视化内部水分传递过程,利用低场核磁共振及其成像技术,监测沈农9816号、七山占及秀子糯3个品种水稻种子48 h浸种过程。每6 h时间间隔利用自旋回波(spin echo,SE)脉冲序列获取样品的质子密度加权像,利用硬脉冲自旋回波(carr-purcell-meiboomgill sequence,CPMG)序列获取样品的横向弛豫时间T2反演谱,从而分析浸种过程对水稻种子内部水分分布的影响。试验结果表明:核磁共振是一种有效的水分检测技术,可以实现浸种过程中种子内部水分的快速、准确、无损的检测。利用水稻种子的质子密度加权像,能够直观检测到种子内部水分分布情况,动态的监测到种子内部水分流动过程,分析发现水分最初是从胚进入种子内部,继而通过种皮的渗透,最后到达胚乳部分。根据T2反演谱信号幅值计算得到的水稻种子吸水率,发现3个品种在相同浸种时间的各个监测点均反映出秀子糯吸水率最高,沈农9816号吸水率最低,试验结果验证了支链淀粉的吸水性优于直链淀粉。研究结果可以为水稻种子浸种过程中水分传递的理论模型构建提供数据支持。  相似文献   

10.
A column of soil, excavated from a contaminated landscape was evaluated by means of X-ray fluorescence analysis. The measurements were intended to assess the vertical distribution of heavy metals and toxic elements in the depth profile. To judge fitness for purpose of the analytical method used the element specific power functions were derived yielding the minimum detectable variations of analyte concentrations refer to the investigated soil profile. The required measurement uncertainty components caused by both the sampling procedure and chemical analysis were empirically estimated using a nested sampling design (duplicate method). For this purpose the full length of the soil core was divided into horizontal layers. From each selected layer (sampling target) two composite samples were taken by simple random sampling to represent the typical composition of the sampling target. The pool of measurement results, obtained for the nested sampling design finally was subjected to variance analysis. The evaluation of the estimated variance components in terms of the percentage of total variance confirmed fitness for purpose for the method used.  相似文献   

11.
The use of plant-derived sorbent was investigated as a remediation strategy for low-energy intertidal wetlands contaminated by crude oil spills. Effectiveness of plant-derived sorbent as a wicking agent was evaluated in microcosms simulating intertidal wetlands. Microcosms were designed to impose three different oil penetration depths (0.25, 0.5, and 1.0?cm), two different tidal amplitudes (±5 and ±10?cm above oil-contaminated surface), and two different types of sorbents (raw bagasse and hydrophobic-treated bagasse). We observed that the use of plant-derived sorbent was beneficial not only in removing oil but also in preventing further contamination. Oil penetration depth and tidal amplitude both negatively influenced the effectiveness of the sorbent. Effectiveness of the hydrophobic-treated sorbent was always higher than that of untreated one at any given oil penetration depth and tidal amplitude. Effectiveness of hydrophobic-treated sorbent was relatively low compared to that of raw bagasse. The most plausible explanation is that oil wicking mainly occurred during low tide. From a cost-effectiveness point of view, we suggest the use of raw bagasse immediately after an oil spill for remediation of low-energy intertidal wetlands. The observed results imply that this technique has potential to stimulate biodegradation by wicking oil out of contaminated intertidal wetlands subsurface to the aerobic zone where biodegradation can take place.  相似文献   

12.
Water characteristics and meat microstructure of NaHCO3-enhanced pork were compared with NaCl- and Na4O7P2-enhanced pork using low-field proton NMR relaxometry, advanced microscopy techniques, and traditional meat quality measurements. Porcine samples were enhanced at 4 degrees C for 48 h with sodium salts individually and in the following combinations: (i) 5% NaCl, (ii) 5% Na4O7P2, (iii) 3% NaHCO3, (iv) 5% NaCl and 5% Na4O7P2, (v) 5% NaCl and 3% NaHCO3, (vi) 5% Na4O7P2 and 3% NaHCO3, and (vii) 5% NaCl, 5% Na4O7P2, and 3% NaHCO3. Independently of the marinade used, the water-binding capacity was improved, cooking loss was reduced, and the yield was enhanced compared with nonmarinated pork samples. This was also reflected in the water mobility within the samples measured by proton NMR relaxometry. Visualization of samples by confocal laser scanning microscopy (CLSM) revealed salt-dependent microstructural changes in the green pork samples treated with NaHCO3, giving rise to nearly complete disintegration of overall structures. High-resolution visualization by atomic force microscopy (AFM) further suggested that a higher cooking loss in sodium chloride-enhanced samples could be ascribed to less solubilization and higher heat-induced protein denaturation compared with phosphate- and bicarbonate-enhanced samples.  相似文献   

13.
X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.  相似文献   

14.
Partial (23)Na MRI invisibility in muscle foods is often referred to as an inherent drawback of the MRI technique, impairing quantitative sodium analysis. Several model samples were designed to simulate muscle foods with a broad variation in protein, fat, moisture, and salt content. (23)Na spin-echo MRI and a recently developed (23)Na SPRITE MRI approach were compared for quantitative sodium imaging, demonstrating the possibility of accurate quantitative (23)Na MRI by the latter method. Good correlations with chemically determined standards were also obtained from bulk (23)Na free induction decay (FID) and CPMG relaxation experiments on the same sample set, indicating their potential use for rapid bulk NaCl measurements. Thus, the sodium MRI invisibility is a methodological problem that can easily be circumvented by using the SPRITE MRI technique.  相似文献   

15.
Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.  相似文献   

16.
X射线CT确定土壤大孔隙结构   总被引:1,自引:0,他引:1  
Undisturbed soil core with many macropores and disturbed soil core with only one macropore (diameter is 10 mm) were probed by x-ray computed tomography (CT). The size, number, shape and continuity of macropores in the transverse and vertical sections of soil were characterized using CT scanning images. The probability densities of macropores in the transverse section of soil core exhibited a logarithmic F distribution. Results indicated that CT scanning was a promising nondestructive method for characterizing macropores in soils.  相似文献   

17.
Continuous NMR T(2) relaxation measurements were carried out on seven rabbit longissimus muscle samples in the period from 25 min to 28 h post-mortem at 200 MHz for (1)H. To display differences in post-mortem pH progress and extent of changes in water characteristics during conversion of muscle to meat, three of the seven animals were pre-slaughter injected with adrenaline (0.5 mg/kg live weight 4 h before sacrifice) to differentiate muscle glycogen stores at the time of slaughter. Distributed analysis of T(2) data displayed clear differences in the characteristics of the various transverse relaxation components dependent on progress in pH, as did the water-holding capacity of samples 24 h post-mortem. This reveals a pronounced effect of the progressive change in pH on the subsequent development in physical/chemical states of water during the conversion of muscle to meat. Finally, the relaxation characteristics are discussed in relation to supposed post-mortem processes of protein denaturation.  相似文献   

18.
Two humic preparations of different origins have been compared as washing agents for oil-contaminated soils and peat under model experimental conditions using a sample from the plow horizon of soddypodzolic soil artificially contaminated with oil or diesel fuel and a sample of high-moor peat contaminated with crude oil because of a spill occurred 15 years ago. Soil and peat were washed by shaking with solutions of the humic preparations Gumat Sakhalinskii and Lignogumat in a 1: 10 (m/v) ratio. Control samples were washed with distilled water. Washing with a synthetic surfactant (sodium dodecyl sulfate) was also added to the experimental design. After washing, soil and peat samples were air-dried and used for the determination of the total content of petroleum hydrocarbons; the characterization of their hydrocarbon composition; and the assessment of hydrophobicity from the contact angle and the efficiency of colonization by oil-destructing microorganisms Rhodococcus sp. and Candida sp., which are components of the preparation Bioros recommended for oil contaminations. It has been shown that the extraction efficiency of petroleum hydrocarbons by humic preparations did not differ from the extraction efficiency by water and was less than that by sodium dodecyl sulfate in all cases. No appreciable changes in the contact angles of soil and peat have been observed at the use of water and humic preparations as washing agents, while the contact angle decreased to less than 90o after washing with sodium dodecyl sulfate, which indicated the hydrophobicity of the surface of substrate particles. It has been found that humic preparations favor the colonization of soil and peat by oil-destructing microorganisms Rhodococcus sp. and Candida sp. Based on the obtained results, humic preparations have been recommended for further study as preparations favoring the ability of oil-destructing microorganisms to colonize oil-contaminated substrates.  相似文献   

19.
Oil biodegradation in oil-contaminated meadow-chestnut soils under the impact of different biological preparations was studied in a model experiment. The soils differed from one another in the age of contamination and in the presence/absence of the stage of preliminary biological remediation. Background uncontaminated soils served as the control. To characterize oil degradation, the indices of basal respiration (BR) and dehydrogenase activity (DA) and data on oil concentrations in the soil were applied. It was shown that the most complete biodegradation of oil takes place in the soils with recent oil contamination in comparison with the soils contaminated with oil for 6.5 and 19.5 months. Maximum BR values were observed in the soils contaminated with oil for 19.5 months, whereas maximum DA values were observed in the soils contaminated with oil for 6.5 months. According to the multivariate analysis of variance, the major factors affecting the rate of oil biodegradation were the age of oil contamination, the biological preparation applied, and the presence (or absence) of the stage of preliminary biological remediation. These factors specified 18, 72, and 3% of the total variance of the residual oil content in the samples, respectively. The type of the applied biological preparations had the major effect on the BR and DA indices specifying 63 and 53% of their total variances, respectively. The results obtained in this study can be used as recommendations for remediation of oil-contaminated soils in the Stavropol region.  相似文献   

20.
The study focused on assessing the influence of rhamnolipids on the phytotoxicity of diesel oil-contaminated soil samples. Tests evaluating the seed germination and growth inhibition of four terrestrial plant species (alfalfa, sorghum, mustard and cuckooflower) were carried out at different rhamnolipid concentrations (ranging from 0 to 1.200?mg/kg of wet soil). The experiments were performed in soil samples with a different diesel oil content (ranging from 0 to 25?ml/kg of wet soil). It was observed that the sole presence of rhamnolipids may be phytotoxic at various levels, which is especially notable for sorghum (the germination index decreased to 41?%). The addition of rhamnolipids to diesel oil-contaminated soil samples contributed to a significant increase of their phytotoxicity. The most toxic effect was observed after a rhamnolipid-supplemented diesel oil biodegradation, carried out with the use of a hydrocarbon-degrading bacteria consortium. The supplemention of rhamnolipids (600?mg/kg of wet soil) resulted in a decrease of seed germination of all studied plant species and an inhibition of microbial activity, which was measured by the 2,3,5-triphenyltetrazolium chloride tests. These findings indicate that the presence of rhamnolipids may considerably increase the phytotoxicity of diesel oil. Therefore, their use at high concentrations, during in situ bioremediation processes, should be avoided in a terrestrial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号