首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi2Sr2CaCu2O8+/-delta superconductors. For underdoped superconductors, short-range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature Tc, the system exhibited a sharp Raman resonance of B1g symmetry and energy of 75 millielectron-volts and a pseudogap for electron-hole excitations below 75 millielectron-volts, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at Tc produces a global SC state.  相似文献   

2.
For some time now, there has been considerable experimental and theoretical effort to understand the role of the normal-state "pseudogap" phase in underdoped high-temperature cuprate superconductors. Recent debate has centered on the question of whether the pseudogap is independent of superconductivity. We provide evidence from zero-field muon spin relaxation measurements in YBa2Cu3O6+x for the presence of small spontaneous static magnetic fields of electronic origin intimately related to the pseudogap transition. Our most significant finding is that, for optimal doping, these weak static magnetic fields appear well below the superconducting transition temperature. The two compositions measured suggest the existence of a quantum critical point somewhat above optimal doping.  相似文献   

3.
We report atomic-scale characterization of the pseudogap state in a high-Tc superconductor, Bi2Sr2CaCu2O(8+delta). The electronic states at low energies within the pseudogap exhibit spatial modulations having an energy-independent incommensurate periodicity. These patterns, which are oriented along the copper-oxygen bond directions, appear to be a consequence of an electronic ordering phenomenon, the observation of which correlates with the pseudogap in the density of electronic states. Our results provide a stringent test for various ordering scenarios in the cuprates, which have been central in the debate on the nature of the pseudogap and the complex electronic phase diagram of these compounds.  相似文献   

4.
Contrary to the conventional wisdom that there is only one unique liquid state for any material, recent evidence suggests that there can be more than two liquid states even for a single-component substance. The transition between these liquid states is called a liquid-liquid phase transition. We report the detailed experimental investigation on the kinetics of the continuous spinodal-decomposition-type transformation of one liquid into another for triphenyl phosphite. From the analysis of the linear regime, we found that the correlation length, xi, of fluctuations of the relevant order parameter diverges as xi = xi(0)[(T(SD) - T)/T(SD)](-nu) (where xi(0) = 60 nm and nu = 0.5) while approaching the spinodal temperature, T(SD). This is an indication of a critical-like anomaly associated with the liquid-liquid transition. We also revealed that the order parameter governing the liquid-liquid transition must be of a nonconserved nature.  相似文献   

5.
High-temperature cuprate superconductors display unexpected nanoscale inhomogeneity in essential properties such as pseudogap energy, Fermi surface, and even superconducting critical temperature. Theoretical explanations for this inhomogeneity have ranged from chemical disorder to spontaneous electronic phase separation. We extend the energy range of scanning tunneling spectroscopy on Bi(2+y)Sr(2-y)CaCu(2)O(8+x), allowing a complete mapping of two types of interstitial oxygen dopants and vacancies at the apical oxygen site. We show that the nanoscale spatial variations in the pseudogap states are correlated with disorder in these dopant concentrations, particularly that of apical oxygen vacancies.  相似文献   

6.
A second-order phase transition is characterized by spontaneous symmetry breaking. The nature of the broken symmetry in the so-called "hidden-order" phase transition in the heavy-fermion compound URu(2)Si(2), at transition temperature T(h) = 17.5 K, has posed a long-standing mystery. We report the emergence of an in-plane anisotropy of the magnetic susceptibility below T(h), which breaks the four-fold rotational symmetry of the tetragonal URu(2)Si(2). Two-fold oscillations in the magnetic torque under in-plane field rotation were sensitively detected in small pure crystals. Our findings suggest that the hidden-order phase is an electronic "nematic" phase, a translationally invariant metallic phase with spontaneous breaking of rotational symmetry.  相似文献   

7.
In a superconductor, the ratio of the carrier density, n, to its effective mass, m*, is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λ(L). In two-dimensional systems, this ratio n/m* (~1/λ(L)(2)) determines the effective Fermi temperature, T(F). We report a sharp peak in the x-dependence of λ(L) at zero temperature in clean samples of BaFe(2)(As(1)(-x)P(x))(2) at the optimum composition x = 0.30, where the superconducting transition temperature T(c) reaches a maximum of 30 kelvin. This structure may arise from quantum fluctuations associated with a quantum critical point. The ratio of T(c)/T(F) at x = 0.30 is enhanced, implying a possible crossover toward the Bose-Einstein condensate limit driven by quantum criticality.  相似文献   

8.
Sizable single crystals of C(6O) have been synthesized and doped with potassium. Above the superconducting transition temperature T(c), the electrical resistivity p(T) displays a classic metal-like temperature dependence. The transition to the superconducting state at T(c) = 19.8 K is extremely sharp, with a transition width DeltaT < 200 mK. In contrast to transport behavior of doped polycrystalline and granular thin films, no anomalous fluctuations are observed near T(c) in single crystal specimens.  相似文献   

9.
Quantum confinement of itinerant electrons in atomically smooth ultrathin lead films produces strong oscillations in the thickness-dependent film energy. By adding extra electrons via bismuth alloying, we showed that both the structural stability and the superconducting properties of such films can be tuned. The phase boundary (upper critical field) between the superconducting vortex state and the normal state indicates an anomalous suppression of superconducting order just below the critical temperature, Tc. This suppression varies systematically with the film thickness and the bismuth content and can be parametrized in terms of a characteristic temperature, Tc* (less than Tc), that is inversely proportional to the scattering mean free path. The results indicate that the isotropic nature of the superconductive pairing in bulk lead-bismuth alloys is altered in the quantum regime.  相似文献   

10.
Electron microscopic study of the reversible P1 to I1 phase transition in anorthite (transition temperature T(c) = 516 Kelvin) shows that the antiphase boundaries (APBs) with the displacement vector R = 1/2[111] become unstable at T(c), and numerous small APB loops are formed. These interfaces are highly mobile, and their vibration frequency increases strongly with temperature. These observations suggest that close to T(c), breathing-motion-type lattice vibrations of the framework cause the two different configurations around the calcium atoms, which are related by a translation of R approximately 1/2[111], to interchange dynamically through an intermediate I1 configuration. The high-temperature I1 structure is interpreted as a statistical-dynamic average of highly mobile antiphase domains of primitive anorthite.  相似文献   

11.
In several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis. We also report that a second pocket of superconductivity occurs at low temperature for a range of fields enveloping this magnetic transition, well above the field of 2 tesla at which superconductivity is first destroyed. Our findings strongly suggest that excitations in which the spins rotate stimulate superconductivity in the neighborhood of a quantum phase transition under high magnetic field.  相似文献   

12.
We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an "inverted" type at a critical thickness d(c). We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.  相似文献   

13.
Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by high-precision measurements of the local compressibility, density, and pressure. Our data completely determine the universal thermodynamics of these gases without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity, which displays a characteristic lambda-like feature at the critical temperature T(c)/T(F) = 0.167(13). The ground-state energy is 3/5ξN E(F) with ξ = 0.376(4). Our measurements provide a benchmark for many-body theories of strongly interacting fermions.  相似文献   

14.
Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF(4), establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H(c|| = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h(4) universality class; in accord with this, the quantum phase transition at H(c) exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.  相似文献   

15.
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.  相似文献   

16.
The recently discovered homologous series HgBa(2)Can-1 Cun O2n+2+delta possesses remarkable properties. A superconducting transition temperature, T(c), as high as 133 kelvin has been measured in a multiphase Hg-Ba-Ca-Cu-O sample and found to be attributable to the Hg-1223 compound. Temperature-dependent electrical resistivity measurements under pressure on a (> 95%) pure Hg-1223 phase are reported. These data show that T(c) increases steadily with pressure at a rate of about 1 kelvin per gigapascal up to 15 gigapascals, then more slowly and reaches a T(c) = 150 kelvin, with the onset of the transition at 157 kelvin, for 23.5 gigapascals. This large pressure variation (as compared to the small effects observed in similar compounds with the optimal T(c)) strongly suggests that higher critical temperatures could be obtained at atmospheric pressure.  相似文献   

17.
采用氮气作为保护气对落叶松进行高温热处理,研究了不同处理温度、处理时间的落叶松经油性漆、水性漆和木蜡油涂饰后的性能变化,分析了不同处理条件下的落叶松涂饰后表面颜色、耐干热、耐湿热、附着力、耐磨性、铅笔硬度以及抗弯强度的变化趋势。研究结果表明:经涂饰处理后的热处理落叶松,随着温度的升高和时间的延长,色饱和度差(ΔC*)明显下降,色差(ΔE*)及色相差(ΔH*)显著增加,说明涂饰可以有效改善木材表面的颜色;相对于热处理时间,热处理温度对落叶松涂饰过程的影响更明显;涂饰后的落叶松漆膜性能结果分为国家标准(GB/T 4893.2—2005、GB/T 4893.3—2005、GB/T 4893.4—2013和GB/T 4893.8—2013)的一级或二级,抗弯强度的改变相对较小。  相似文献   

18.
The metallization of hydrogen directly would require pressure in excess of 400 gigapascals (GPa), out of the reach of present experimental techniques. The dense group IVa hydrides attract considerable attention because hydrogen in these compounds is chemically precompressed and a metallic state is expected to be achievable at experimentally accessible pressures. We report the transformation of insulating molecular silane to a metal at 50 GPa, becoming superconducting at a transition temperature of Tc = 17 kelvin at 96 and 120 GPa. The metallic phase has a hexagonal close-packed structure with a high density of atomic hydrogen, creating a three-dimensional conducting network. These experimental findings support the idea of modeling metallic hydrogen with hydrogen-rich alloy.  相似文献   

19.
The superconducting compound K(3)C(60) (with transition temperature T(c) = 19.3 kelvin at ambient pressure), formed as a single phase by reaction of alkali vapor with solids of the icosahedral C(60) molecule (buckminsterfullerene), shows a very large decrease of T(c) with increasing pressure. Susceptibility measurements on sintered pellets showing bulk superconductivity are reported up to 21 kilobars of pressure, where T(c) is already less than 8 kelvin. The results are consistent with a piling up of the density of states at the Fermi level.  相似文献   

20.
When a liquid is cooled below its melting temperature, it usually crystallizes. However, if the quenching rate is fast enough, the system may remain in a disordered state, progressively losing its fluidity upon further cooling. When the time needed for the rearrangement of the local atomic structure reaches approximately 100 seconds, the system becomes "solid" for any practical purpose, and this defines the glass transition temperature Tg. Approaching this transition from the liquid side, different systems show qualitatively different temperature dependencies of the viscosity, and accordingly they have been classified by introducing the concept of "fragility." We report experimental observations that relate the microscopic properties of the glassy phase to the fragility. We find that the vibrational properties of the glass well below Tg are correlated with the fragility value. Consequently, we extend the fragility concept to the glassy state and indicate how to determine the fragility uniquely from glass properties well below Tg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号