首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Lin SY  Li TY  Liu Q  Zhang C  Li X  Chen Y  Zhang SM  Lian G  Liu Q  Ruan K  Wang Z  Zhang CS  Chien KY  Wu J  Li Q  Han J  Lin SC 《Science (New York, N.Y.)》2012,336(6080):477-481
In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser(86), which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60(S86A) that cannot be phosphorylated by GSK3 could not undergo serum deprivation-induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1(-/-) mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.  相似文献   

2.
为探究蜂胶中4种黄酮成分(高良姜素、短叶松素、松属素、柯因)对胰岛素抵抗的改善作用。通过高浓度胰岛素诱导的方式建立胰岛素抵抗HepG2细胞模型;设立正常组、模型组、高良姜素处理组、短叶松素处理组、松属素处理组、柯因处理组,测定各试验组对HepG2细胞增殖、葡萄糖消耗量、糖原含量、已糖激酶(hexokinase,HK)和丙酮酸激酶(pyruvate kinase,PK)的影响。结果显示:4种黄酮成分在有效浓度范围内对胰岛素抵抗HepG2细胞增殖均无显著影响(P0.05);柯因、短叶松素作用效果不明显(P0.05);高良姜素和松属素均能不同程度地提高IR-HepG2细胞葡萄糖消耗量(glucose consumption,GC)、肝糖原含量、HK和PK活力(P0.05)。上述结果表明蜂胶中高良姜素和松属素能较好地调节IR-HepG2糖代谢,改善胰岛素抵抗,为蜂胶产品的深度开发提供参考。  相似文献   

3.
【目的】昆虫胰岛素信号途径能够介导糖原合成酶激酶3(glycogen synthase kinase 3,简称GSK-3或GSK3)调控体内糖原及海藻糖等糖代谢过程,从而控制昆虫的各项生命活动。论文旨在探究糖原合成酶激酶在褐飞虱(Nilaparvata lugens)体内对糖原与海藻糖代谢的调控作用。【方法】首先,基于GSK-3的cDNA编码序列,利用ExPASy工具翻译GSK-3氨基酸序列,预测蛋白分子量大小及等电点(pI);然后利用SignaIP4.1Server对其信号肽进行分析。其次,以笔者实验室饲养的褐飞虱为研究对象,从4龄开始,每12 h取材,取至成虫48 h。利用Trizol法提取褐飞虱总RNA,根据反转录试剂盒合成第一链DNA,以18S作为内参基因,通过实时荧光定量PCR(qRT-PCR)检测褐飞虱GSK-3在不同龄期mRNA水平上的相对表达量。然后利用RNAi技术,向褐飞虱体内显微注射双链RNA(dsRNA)抑制GSK-3,以注射dsGFP的褐飞虱作为对照组。注射后48 h利用qRT-PCR技术检测GSK-3的表达情况,确定抑制效果。另外,取注射后48 h虫体,分别测定褐飞虱体内海藻糖、葡萄糖、糖原含量及海藻糖酶(trehalase,TRE)活性变化。最后采用qRT-PCR检测胰岛素信号通路胰岛素受体基因(insulin receptor,InR)、类胰岛素多肽基因(insulin-like peptides,Ilps)及海藻糖代谢途径TRE、海藻糖合成酶基因(trehalose-6-phophate synthase,TPS)、糖原磷酸化酶基因(glycogen phosphorylase,GP)、糖原合成酶基因(glycogen synthase,GS)中相关基因的表达,分析GSK-3在胰岛素信号通路及海藻糖代谢途径中的调控作用。【结果】褐飞虱GSK-3开放阅读框为1 914 bp,编码637个氨基酸;预测蛋白分子量为69.25 kD,等电点为9.15,为偏碱性蛋白,无信号肽结构,序列高度保守。发育表达模式结果显示GSK-3在不同发育阶段表达不一致,5龄若虫蜕皮前后低表达。GSK-3的dsRNA注射后48 h,与对照组dsGFP相比,GSK-3表达极显著下降,表明RNA干扰效果明显。糖原含量和两类海藻糖酶活性显著下降,而海藻糖含量显著上升,推测糖原和葡萄糖转化为海藻糖,作为其生理活动的能量来源。qRT-PCR检测发现,当GSK-3表达抑制后48 h,TRE1-2的表达量显著下降,而TRE1-1TRE2的表达量极显著下降。另外,2个TPS基因、GS以及GP的表达量均极显著下降;胰岛素信号通路的2个InR基因和4个Ilps基因的表达同样被抑制,间接表明InR能够调控GSK-3的表达。【结论】褐飞虱GSK-3低表达后能够通过调控胰岛素信号通路及海藻糖代谢途径相关基因表达来调控糖原及海藻糖代谢。相关研究结果有助于更加全面地探索褐飞虱等昆虫糖原合成酶激酶调控海藻糖及糖类物质平衡的潜在分子机理。  相似文献   

4.
How cyclooxygenase-2 (COX-2) and its proinflammatory metabolite prostaglandin E2 (PGE2) enhance colon cancer progression remains poorly understood. We show that PGE2 stimulates colon cancer cell growth through its heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor, EP2, by a signaling route that involves the activation of phosphoinositide 3-kinase and the protein kinase Akt by free G protein betagamma subunits and the direct association of the G protein alphas subunit with the regulator of G protein signaling (RGS) domain of axin. This leads to the inactivation and release of glycogen synthase kinase 3beta from its complex with axin, thereby relieving the inhibitory phosphorylation of beta-catenin and activating its signaling pathway. These findings may provide a molecular framework for the future evaluation of chemopreventive strategies for colorectal cancer.  相似文献   

5.
 为研究日粮不同能量和蛋白质水平对乌金猪肌肉组织能量代谢的影响,试验选取体重约15kg的乌金猪108头,随机分为6组,下设3个重复,每个重复6头,在15~30,>30~60,>60~100kg体重阶段分别饲喂不同能量和蛋白质水平日粮,能量水平为:高消化能(HE,1422MJ/kg)、中消化能 (ME,1289MJ/kg)和低消化能 (LE,1174MJ/kg),蛋白水平为:高蛋白质 (HP,18%,16%,14%)、中蛋白质(MP,16%,14%,12%)和低蛋白质(LP,14%,12%和10%),在体重30,60,100kg体重时分批屠宰,取血液、肝脏及肌肉组织样品,测定血糖、肝糖原、肌糖原和肌肉中乳酸的含量及肌肉中乳酸脱氢酶、钠钾ATP酶(Na+K+ATP酶)和钙镁ATP酶(Ca2+Mg2+ATP酶)的活性。结果表明,乌金猪血糖、肝糖原、肌糖原和肌肉中乳酸的含量及肌肉中乳酸脱氢酶、Na+K+ ATP酶和Ca2+Mg2+ATP酶的活性随日粮能量和蛋白质水平的升高而升高;在60kg体重时,高能量和高蛋白质日粮组乌金猪上述各项指标均明显升高(P<0.05),在100kg体重时,高能量和高蛋白质日粮组乌金猪血糖、肝糖原和肌糖原的含量及Na+K+ATP酶和Ca2+Mg2+ATP酶的活性明显高于低能量和低蛋白质组(P<0.05)。本次试验结果表明高能量和高蛋白质日粮(HE,1422MJ/kg和HP,18%)可促进乌金猪肝糖原和肌糖原的合成,肌肉组织中糖酵解途径供能增加,能量代谢加强。研究结果对阐明日粮不同营养水平对猪肌肉组织能量代谢的影响机制具有重要科学意义。  相似文献   

6.
After insulin binds   总被引:54,自引:0,他引:54  
O M Rosen 《Science (New York, N.Y.)》1987,237(4821):1452-1458
Three recent advances pertinent to the mechanism of insulin action include (i) the discovery that the insulin receptor is an insulin-dependent protein tyrosine kinase, functionally related to certain growth factor receptors and oncogene-encoded proteins, (ii) the molecular cloning of the insulin proreceptor complementary DNA, and (iii) evidence that the protein tyrosine kinase activity of the receptor is essential for insulin action. Efforts are now focusing on the physiological substrates for the receptor kinase. Experience to date suggests that they will be rare proteins whose phosphorylation in intact cells may be transient. The advantages of attempting to dissect the initial biochemical pathway of insulin action include the wealth of information about the metabolic consequences of insulin action and the potential for genetic analysis in Drosophila and in man.  相似文献   

7.
8.
The PKB (protein kinase B, also called Akt) family of protein kinases plays a key role in insulin signaling, cellular survival, and transformation. PKB is activated by phosphorylation on residues threonine 308, by the protein kinase PDK1, and Serine 473, by a putative serine 473 kinase. Several protein binding partners for PKB have been identified. Here, we describe a protein partner for PKBalpha termed CTMP, or carboxyl-terminal modulator protein, that binds specifically to the carboxyl-terminal regulatory domain of PKBalpha at the plasma membrane. Binding of CTMP reduces the activity of PKBalpha by inhibiting phosphorylation on serine 473 and threonine 308. Moreover, CTMP expression reverts the phenotype of v-Akt-transformed cells examined under a number of criteria including cell morphology, growth rate, and in vivo tumorigenesis. These findings identify CTMP as a negative regulatory component of the pathway controlling PKB activity.  相似文献   

9.
Studies of a child with glycogenosis revealed an increased concentration of glycogen and low phosphorylase activity in her liver. Using mixtures of homogenates of the patient's liver and of normal liver, we found the low phosphorylase activity to be caused by a deficiency of phosphorylase kinase and not of hepatic phosphorylase. The fact that phosphorylase activity was restored to normal values by the addition of phosphorylase b kinase from rabbit muscle substantiates this conclusion.  相似文献   

10.
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1   总被引:3,自引:0,他引:3  
The multiprotein mTORC1 protein kinase complex is the central component of a pathway that promotes growth in response to insulin, energy levels, and amino acids and is deregulated in common cancers. We find that the Rag proteins--a family of four related small guanosine triphosphatases (GTPases)--interact with mTORC1 in an amino acid-sensitive manner and are necessary for the activation of the mTORC1 pathway by amino acids. A Rag mutant that is constitutively bound to guanosine triphosphate interacted strongly with mTORC1, and its expression within cells made the mTORC1 pathway resistant to amino acid deprivation. Conversely, expression of a guanosine diphosphate-bound Rag mutant prevented stimulation of mTORC1 by amino acids. The Rag proteins do not directly stimulate the kinase activity of mTORC1, but, like amino acids, promote the intracellular localization of mTOR to a compartment that also contains its activator Rheb.  相似文献   

11.
Oh JS  Susor A  Conti M 《Science (New York, N.Y.)》2011,332(6028):462-465
Waves of cyclin synthesis and degradation regulate the activity of Cdc2 protein kinase during the cell cycle. Cdc2 inactivation by Wee1B-mediated phosphorylation is necessary for arrest of the oocyte at G2-prophase, but it is unclear whether this regulation functions later during the metaphase-to-anaphase transition. We show that reactivation of a Wee1B pathway triggers the decrease in Cdc2 activity during egg activation. When Wee1B is down-regulated, oocytes fail to form a pronucleus in response to Ca(2+) signals. Calcium-calmodulin-dependent kinase II (CaMKII) activates Wee1B, and CaMKII-driven exit from metaphase II is inhibited by Wee1B down-regulation, demonstrating that exit from metaphase requires not only a proteolytic degradation of cyclin B but also the inhibitory phosphorylation of Cdc2 by Wee1B.  相似文献   

12.
The insulin receptor has an intrinsic tyrosine kinase activity that is essential for signal transduction. A mutant insulin receptor gene lacking almost the entire kinase domain has been identified in an individual with type A insulin resistance and acanthosis nigricans. Insulin binding to the erythrocytes or cultured fibroblasts from this individual was normal. However receptor autophosphorylation and tyrosine kinase activity toward an exogenous substrate were reduced in partially purified insulin receptors from the proband's lymphocytes that had been transformed by Epstein-Barr virus. The insulin resistance associated with this mutated gene was inherited by the proband from her mother as an apparently autosomal dominant trait. Thus a deletion in one allele of the insulin receptor gene may be at least partly responsible for some instances of insulin-resistant diabetes.  相似文献   

13.
A high proportion of purebred Hampshire pigs carries the dominant RN- mutation, which causes high glycogen content in skeletal muscle. The mutation has beneficial effects on meat content but detrimental effects on processing yield. Here, it is shown that the mutation is a nonconservative substitution (R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4) cause defects in glucose metabolism, including glycogen storage. Further analysis of the PRKAG3 signaling pathway may provide insights into muscle physiology as well as the pathogenesis of noninsulin-dependent diabetes mellitus in humans, a metabolic disorder associated with impaired glycogen synthesis.  相似文献   

14.
目的探讨鸡树条荚蒾果多酚对HepG2细胞胰岛素抵抗(IR)模型的改善作用,以评价其降血糖活性。方法本研究采用高浓度胰岛素诱导,建立体外IR模型,并进行模型稳定性(细胞活性法)及可靠性(Z因子法)评估。试验设空白组、IR模型组、阳性对照(二甲双胍)组和荚蒾果多酚组,MTT法检测细胞活性;葡萄糖氧化酶法检测培养液葡萄糖含量,计算葡萄糖消 耗量;蒽酮法测定糖原含量;比色法检测细胞己糖激酶(HK)、丙酮酸激酶(PK)活性,酶联免疫吸附试验(ELISA)检测细胞磷酸烯醇式丙酮酸激酶(PEPCK)、葡萄糖六磷酸酶(G6PC)活性。结果10? 6 mol/L的胰岛素诱导处理HepG2细胞24 h是产生胰岛素抵抗模型的最适条件,且IR模型在12 ~ 36 h内有较高的稳定性和可靠性。0.10 ~ 1.00 mg/mL 荚蒾果多酚组的葡萄糖消耗量显著高于模型组(P < 0.05),24 h、0.50 mg/mL组的糖消耗量最高,为(3.49 ± 0.11)mmol/L,消耗率可达88.81%(P < 0.01)。与模型组对比,荚蒾果多酚可提高糖原的含量33.65%(P < 0.01),HK、PK活性可分别提高43.36%(P < 0.05)、48.41%(P < 0.01),对G6PC、PEPCK活性抑制率为分别为22.86%(P < 0.01)、17.33%(P < 0.05)。结论鸡树条荚蒾果多酚可提高IR- HepG2细胞的HK、PK活性,加快糖酵解,增加糖原含量;抑制G6PC、PEPCK活性,从而减少细胞内源性葡萄糖的产生。所以鸡树条荚蒾果多酚对胰岛素抵抗细胞的治疗具有一定效果。   相似文献   

15.
16.
17.
18.
19.
The formation of the neuromuscular synapse requires muscle-specific receptor kinase (MuSK) to orchestrate postsynaptic differentiation, including the clustering of receptors for the neurotransmitter acetylcholine. Upon innervation, neural agrin activates MuSK to establish the postsynaptic apparatus, although agrin-independent formation of neuromuscular synapses can also occur experimentally in the absence of neurotransmission. Dok-7, a MuSK-interacting cytoplasmic protein, is essential for MuSK activation in cultured myotubes; in particular, the Dok-7 phosphotyrosine-binding domain and its target in MuSK are indispensable. Mice lacking Dok-7 formed neither acetylcholine receptor clusters nor neuromuscular synapses. Thus, Dok-7 is essential for neuromuscular synaptogenesis through its interaction with MuSK.  相似文献   

20.
Mononuclear blood cells were obtained from a patient with type A insulin resistance. The cells showed a normal ability to bind iodine 125-labeled insulin. Analysis of solubilized insulin receptors from the patient's cells revealed a defect in insulin-stimulated tyrosine kinase activity, which is closely associated with the receptor itself. The enzyme failed to phosphorylate the insulin receptor and showed a markedly reduced ability to phosphorylate exogenously added substrates. It appears that receptors from this insulin-resistant patient have a defect distal to the insulin-binding site (the alpha subunit of the receptor). The defect could be located in the beta subunit, which has an adenosine triphosphate-binding site, or in another receptor component that transfers a signal of insulin binding into kinase activity. This dissociation between the normal binding and the defective protein kinase component of the insulin receptor represents the first biochemical defect of the receptor distal to ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号