首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以河套灌区沙壕渠灌域为例,采用SaltMod模型探讨了不同灌溉制度对作物根层土壤盐分的影响.利用2008-2010年基础资料对模型进行率定和验证并对研究区的根层土壤盐分进行模拟和预测.结果表明:在现有灌排条件下,沙壕渠灌域的盐渍化程度基本达到较为稳定的水平,且有轻微脱盐趋势,未来10 a后作物根层土壤盐分降低3%.生育期土壤水盐垂直交换运动强烈,对于控制土壤盐分而言,灌水量越小越好;作物根层土壤盐分随冬灌灌溉定额的增大而减小,不同冬灌灌溉定额对应的根层土壤盐分最初的增加量均较大,但增加的趋势随时间逐渐降低.根据当地作物种植结构,综合考虑节水灌溉、作物产量和根层土壤水盐环境,建议研究区较优的作物生育期综合净灌溉定额为2 700~3 500 m3/hm2,冬灌净灌溉定额为2 700 m3/hm2.  相似文献   

2.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

3.
为合理高效利用河北低平原区浅层地下咸水资源,采用田间试验的方法,系统研究了不同矿化度(1,2,4,6,8 g/L)灌溉水对土壤盐分分布与冬小麦产量的影响.结果表明,随灌溉水中矿化度的增加,0~20 cm厚度的土层土壤容重增加,同时土壤孔隙率逐渐降低.与淡水处理(1 g/L)相比,矿化度为2 g/L的灌溉水浇灌的麦田0~100 cm土层土壤平均盐分含量未出现明显增加;冬小麦拔节期、孕穗期和抽穗期的叶面积指数、株高以及单位面积穗数、穗粒数、千粒质量和籽粒产量未呈现明显差异.然而,当灌溉水矿化度增加到4 g/L以上时,0~100 cm土层土壤平均盐分含量大幅增加,植株生长受到明显抑制,籽粒产量出现显著下降,减产主要因素为咸水灌溉导致的冬小麦穗数减少.在该灌溉模式下,推荐冬小麦咸水灌溉的适宜矿化度低于2 g/L.  相似文献   

4.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

5.
A model was developed to predict rootzone salinity under different irrigation practices on different soil types, with similar rainfall but different monthly distributions. A rootzone daily water and salt balance was performed using eight scenarios: two soil types (coarse textured vs. fine textured), two multi-year series of actual rainfall data and two irrigation practices (surface with fixed number of irrigations and ET-based sprinkler irrigation). All factors influenced the mean electrical conductivity (EC) of the rootzone in the growing season (ECeS): (i) Surface irrigation led to lower ECeS than sprinkler irrigation; (ii) Winter-concentrated rainfall caused lower ECeS than rainfall distributed uniformly throughout the year; and (iii) Coarser-textured soil usually resulted in lower ECeS than the finer textured. The ECeS was related to the total precipitation of the hydrologic year and to the annual leaching fraction (LF) but surprisingly not to the seasonal LF. In most cases, the model predicted lower ECeS than the FAO steady-state approach. Therefore, considering these site-specific features could lead to lower leaching requirements and the safe use of higher salinity water.  相似文献   

6.
The introduction of polysaccharide producing benthic algae and bacteria could provide a low cost technique for seepage control in irrigation channels. The ability of algae and bacteria to produce polysaccharides proved to be successful in reducing the hydraulic conductivity of irrigation channel soil. Hydraulic conductivity was reduced to less than 22% of its original value within a month of inoculating soil columns with algae. Chlorophyll and polysaccharide concentrations in irrigation channel soil were measured in order to assess the growth of algae and extent of polysaccharide production, and their correlation with hydraulic conductivity of channel soil. Increases in polysaccharide occurred in the top layer (0–5 mm) of the soil column. The reduction of hydraulic conductivity was highly correlated with the amount of polysaccharides produced (r 2 = 0.92). Hydraulic conductivity decreased with increasing algal and bacterial numbers. The first few millimetres of the soil core where microbial activity was concentrated, seemed effective in controlling seepage. Incorporation of extra nitrate and phosphate into algal medium did not increase the production of polysaccharides by algae in channel soil. The effect of salinity and turbidity of irrigation channel water on channel seepage was studied by measuring the effects on hydraulic conductivity of channel soils. When the electrical conductivity (EC) of the water increased above a threshold value, the hydraulic conductivity increased because of the flocculating effects on clay particles in channel soils. A relationship between sodium adsorption ratio (SAR) and EC of the channel water was established which indicated 15% increase in channel seepage due to increases in salinity. Increasing the turbidity of irrigation water (by increasing the concentration of dispersed clay) resulted in lowering the hydraulic conductivity of the channel soil due to the sealing of soil pores by dispersed clay particles. When the turbidity of the water was 10 g clay l–1, the hydraulic conductivity was reduced by 100%. An increase in clay concentration above 1 g l–1 resulted in significant reduction in hydraulic conductivity. Soil bowl experiments indicated that clay sealing with a coating of hydrophobic polymer on the surface could also effectively prevent seepage of saline water.  相似文献   

7.
Summary Irrigated cultivation of pecans (Carya illinoensis K.) has increased dramatically in the Southwestern USA, yet their tolerance to salinity remains largely unknown. The first part of this study was conducted to assess if stunted tree growth reported in clayey soils is related to salinity, and the second part was to evaluate changes in soil salinity and the performance of 11 year old Western trees irrigated with water of 1.1 dSm–1 and 4.3 dSm–1 for 4 years. The first study, conducted at a commercial orchard (49 ha) in the El Paso valley (TX), showed a highly significant correlation between tree trunk size and salinity of the saturation extract (ECe) with r=–0.89. Soil salinity above which trunk size decreased in excess of the standard error was 2.0 dSm–1 in ECe from 0–30 cm depth, and 3.0 dSm–1 in 0 to 60 cm depth with corresponding Na concentrations of 14 and 21 mmol l–1. Excessive accumulation of salts and Na was found only in silty clay and silty clay loam soils. The second study, conducted at a small experimental field (1 ha), indicated that irrigation with waters of 1.1 and 4.3 dSm–1 increased ECe of the top 60 cm profile from 1.5 to 2.2 and 4.2 dSm–1 and Na concentration in the saturation extract to 17 and 33 mmol l–1, respectively. The leaching fractions were estimated at 13 and 37% when irrigated with waters of 1.1 and 4.3 dSm–1, respectively. Tree growth progressively slowed in the saline plots irrigated with water of 4.3 dSm–1, and became minimal during the 4th year. The cumulative shoot length over the 4 year period was reduced by 24% and trunk diameter by 18% in the saline plots relative to nonsaline plots. Irrigation with the saline water also reduced nut yields by 32%, nut size by 15% and leaflet area by 26% on the 4 year average, indicating that pecans are only moderately tolerant to salinity. The concentration of Na, Cl and Zn in the middle leaflet pair did not differ significantly between the two treatments. Soil salinity provided a more reliable measure for assessing salinity hazard than leaf analysis. However, soil salinity was found to be highly spatially variable following a normal distribution within a soil type. This high variability needs to be recognized in soil sampling as well as managing irrigation.Contribution from Texas Agricultural Experimental Station, Texas A & M University System. This program was supported in part by a grant from the Binational Agricultural Research and Development (BARD) fund  相似文献   

8.
Summary Results are reported from a long-term field experiment designed to determine the effect of irrigation water salinity on the yield and water uptake of mature grapefruit trees. Treatments were started in 1970 and consisted of chloride concentrations in the irrigation water of 7.1, 11.4 and 17.1 meq/1 added as NaCl+CaCl2 at a 1 : 1 weight ratio.For the last four years of the experiment, 1973 to 1976, yield was linearly related to the mean chloride concentration in the soil saturation extract weighted according to the distribution of water uptake with depth and time (Fig. 2, Table 1). There was a 1.45% (1.68 Mg/ha) yield reduction for each 1 meq/1 increase in chloride concentration above a threshold value of 4.5 meq/1. This corresponded to a 13.5% (14.7 Mg/ha) decrease per 1 mmho/cm increase in the electrical conductivity of the soil saturation extract above a threshold value of 1.2 mmho/cm.Total water uptake was reduced as salt concentration in the soil increased (Fig. 3, Table 2). In the high salinity treatment, root concentration in, and water uptake from, the lower portion of the root zone were decreased. The maximum electrical conductivity (ECe) measured at the bottom of the root zone was 7.90 mmho/cm similar to the values of EC, obtained by linear extrapolation to zero yield and also to zero water uptake.Salt accumulation in the soil depended on the quantity and salt concentration of the irrigation water, rainfall, and on the amount of leaching. SAR and the Na+ concentration of the soil remained low throughout the experiment (Table 3). No leaf symptoms of either Cl or Na+ injury were observed. The results indicate an osmotic — rather than a specific ion effect — of salinity on grapefruit yield.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1977 Series No. 197-E  相似文献   

9.
华北平原农业灌溉用水非常紧缺,水资源日益缺乏与粮食需求日益增多之间的矛盾尖锐。充分利用微咸水资源是缓解这一矛盾的重要途径之一。该文以中国农业大学曲周试验站1997-2005年冬小麦和夏玉米微咸水灌溉田间长期定位试验为基础,研究了充分淡水、充分淡咸水、关键期淡水、关键期淡咸水和不灌溉等5个处理下土壤饱和电导率和含盐量的动态变化,探讨了微咸水灌溉对冬小麦和夏玉米产量的影响。结果表明:土壤水盐动态呈受灌溉和降雨影响的短期波动和受季节更替影响的长期波动;在正常降雨年份,使用微咸水进行灌溉是可行的,不会导致土壤的次生盐渍化;微咸水灌溉虽然导致冬小麦和夏玉米产量降低10%~15%,但节约淡水资源60%~75%。如果降雨量达到多年平均水平以及微咸水灌溉制度制订合理,微咸水用于冬小麦/玉米田间灌溉前景广阔。  相似文献   

10.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

11.
棉花滴灌田间盐分变化规律的初步研究   总被引:17,自引:3,他引:17  
以田间实验为基础对棉花滴灌土壤盐分的变化规律进行了分析研究。结果表明:滴灌为浅灌且可控性强,不会产生深层渗漏,土壤含盐量在整个滴灌期较低。盐分在空间的分布主要受蒸发和湿润区范围的影响,灌水量的增加有助于土壤脱盐。这些结果对在生产实践中控制滴灌水量和治理盐碱具有指导意义。  相似文献   

12.
Good water management combined with appropriate soil management is necessary for sustainable crop production in drylands. A pot culture experiment was conducted using sand dune soil under greenhouse conditions to evaluate the response of wheat (Triticum aestivum L.) to the application of farmyard manure (FYM) or poultry manure (PM), and irrigation with water at two salinity levels (0.11 and 2.0 dS m−1) and two irrigation intervals (daily and every second day). The manure was applied at a rate of 20 Mg ha−1. The soil water content, measured 1 h before every irrigation, showed that soil treated with PM retained more water than that treated with FYM, while the control (no manure) contained the least water. FYM treatment resulted in 78 and 21% higher dry matter yield compared to the control and PM treatments, respectively, under daily irrigation using good-quality water. The increase was 29 and 55%, respectively, when saline water was used for daily irrigation. A similar trend was observed with the alternate day irrigation treatment; FYM gave the highest dry matter yield. The number of tillers and plant height showed that FYM was better than PM, which in turn was better than the control under irrigation with good-quality water regardless of the irrigation interval. When water of the highest salinity was used for irrigation, FYM was still always the best, but the control was now better than the PM treatment. The electrical conductivity of the soil measured at the end of the experiment was slightly higher with PM, as compared to the FYM and control treatments. A significant interaction between irrigation water quality and manure application was observed, affecting plant growth. PM aggravated the adverse affect of saline water on plant growth by increasing soil salinity.  相似文献   

13.
A long-term study in the rhizotron at the U.S. Salinity Laboratory established the yield and evapotranspiration of tall fescue as a function of irrigation water salinity, leaching fraction, and irrigation frequency. As the salt concentration of the irrigation water increased or leaching fraction decreased, dry matter production was reduced significantly. Differences in production because of irrigation frequency, however, were insignificant. With low stress (high leaching, L = 0.27, and low salinity water, S = 1 dS/m) annual dry matter yields were 2.0 kg/m2, compared to annual yields of 1.4 kg/m2 with high stress (low leaching, L = 0.09, and high salinity water, S = 4 dS/m).Annual evapotranspiration dropped from 1860 mm for low stress treatments to 1170 mm for high stress. Soil evaporation was negligible for the mature grass stand. In concurrence with several models, relative dry matter production was proportional to relative water use.The salt tolerance of treatments dominated by osmotic potential was in agreement with that published for tall fescue. As matric potential decreased among treatments yields fell significantly below that predicted by the salt tolerance model.  相似文献   

14.
进行暗管排水条件下微咸水灌溉田间试验,设置3种暗管埋深,分别为80 cm(D1)、120 cm(D2)以及无暗管排水(D0),3种微咸水浓度,其电导率分别为0.78 dS/m(S1),3.75 dS/m(S2)和6.25 dS/m(S3),共9个处理,每个处理3组重复.试验结果表明:暗管排水措施可以有效排除微咸水灌溉过程中土壤中累积的盐分;在玉米全生育期内,暗管埋深D1条件下,3种浓度微咸水S1,S2和S3灌溉时根系土壤电导率分别下降了39.00%,31.56%和29.43%,暗管埋深D2条件下,根系土壤电导率则分别下降了31.91%,18.08%和7.44%;夏玉米干物质累积量、穗棒累积量和穗棒质量分配率及最终产量均随着微咸水浓度的升高而降低;在相同微咸水浓度下,不同暗管埋设条件下的夏玉米最终产量从大到小依次为D1,D2,D0;3种暗管埋设条件下的作物需水量从大到小依次为D0,D2,D1的规律;暗管埋深80 cm的处理(D1)下夏玉米水分利用效率最高,而未埋设暗管的处理(D0)水分利用效率最低;当暗管埋设条件一定时,夏玉米水分利用效率随微咸水浓度的升高呈逐渐降低的趋势.  相似文献   

15.
Summary Citrus is considered to be specifically sensitive to chloride and sodium, yet little data exist to show the effect of these ions on yield. An experiment was started in 1978 to study the effect of sodic irrigation water on yield. The treatments were SAR of the irrigation water of 2.8-(L), 5.5-(M), and 10.3-(H) (mol/m3)1/2 . The experiment follows a study on the same plots using irrigation water of variable chloride concentration and a uniform SAR of 4.2 (mol/m3)1/2.The high SAR, high Cl water resulted in a yield reduction of 9% from the control treatment. This reduction was similar to the reduction observed when only Cl was a variable. Total water uptake was reduced as salt concentration in the soil increased. The average water uptake for the four irrigation seasons 1978 to 1981 was 1025 mm, 953 mm and 823 mm for the L, M and H treatments, respectively.Soil ESP was increased as a result of sodium accumulation in the soil profile in the M and H treatments, while Cl and EC remained relatively constant with time during the experiment. After four years of irrigation the infiltration capacity values were 0.26, 0.17 and 0.16 cm/h for the L, M and H treatments, respectively. Fruit quality was not affected by the treatments.No specific toxicity symptoms were observed when the Na concentration in the soil saturation extract was 16 mol/m3 and the ESP was 8.0. The results lead to the conclusion that within the range used in this experiment the high ESP did not specifically effect yield and that yield response was due to the total salt concentration in the soil.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 626-E, 1982 series  相似文献   

16.
Although ‘sewage farming’ or wastewater irrigation started in Australia in the latter parts of the 19th century, it was in the late 1960s that a considerable interest was revived in arid and semi-arid parts of the world due to scarcity of alternative water sources and the urgency to increase local food production. The practice has manifold benefits in the form of water conservation, nutrient recycling, surface and ground water pollution prevention. But for arid and semi-arid regions like many parts of Australia, while wastewater irrigation can be an attractive solution to irrigation water problems, it might not be the ideal solution for the common soil types encountered in these regions. Due to characteristic low rainfall, high evaporation and low leaching, these soils tend to have higher salt accumulations. This paper examines the soil salinity and sodicity effects of wastewater irrigation in soil types typical to South Eastern Australia and takes the soils of Western Treatment Plant (WTP) as a case study to highlight these issues.  相似文献   

17.
不同种植年限对压砂地土壤盐分及西瓜产量的影响   总被引:2,自引:0,他引:2  
通过大田试验,研究了宁夏环香山地区不同种植年限对压砂地土壤盐分以及西瓜产量的影响,以期为压砂地持续利用及西瓜生产力预估提供参考.结果表明:随着种植年限增加,压砂地0~80 cm土层内土壤盐分总值不断降低;在种植6,10,15 a后,盐碱性压砂地0~80 cm土层内盐分含量较3 a的分别降低了70.3%,21.4%和56.4%,非盐碱性压砂地0~80 cm土层内盐分分别降低了50.6%,62.4%和34.8%;随着土层深度增加,盐碱性与非盐碱性压砂地的土壤盐分含量均呈增大趋势;非盐碱性压砂地在0~80 cm土层内,pH值呈先减小后增大趋势;西瓜产量与盐分含量关系密切,盐碱性压砂地的西瓜产量随着盐分降低不断增大,西瓜产量随土壤盐分降低先增大后减小.  相似文献   

18.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

19.
为研究新疆绿洲区盐碱地应用膜下滴灌技术是否对荒地土壤盐分质量比及组成产生影响,以新疆典型盐碱绿洲区域(玛纳斯河流域下野地灌区)膜下滴灌棉田之间荒地为例,通过2009—2013年的定点监测,分析了年际间0~140 cm土层盐分及盐分离子变化.研究结果表明受滴灌棉田灌溉影响,地下水位提升以及地下水矿化度增加,造成新疆绿洲盐碱滴灌区域荒地土壤盐分在4月中旬至10月中旬的增加量大于10月中旬至翌年4月中旬的降低值,盐分和SO2-4,Cl-,Mg2+,Ca2+,Na+以及Cl-/SO2-4和钠离子吸附比都在逐年递增;荒地土壤碱度逐年提升,阴阳离子组成也在逐年变化,但试验期间内研究区域荒地盐碱土类型一直属于氯化物-硫酸盐盐土.滴灌技术在绿洲区推广后,区域内的荒地成为农田排出盐分重要的聚集场所之一.  相似文献   

20.
New soil moisture sensor systems (SMSs) for irrigation control have been commercialized in recent years. However, limited research has been carried out to evaluate their precision to measure the volumetric soil water content (θ). The objectives of this research were to: (a) determine the relationship between θ and the θ sensed by four commercially available SMSs, (b) quantify the proportion of scheduled irrigation cycles (SICs) that the SMSs bypassed, and (c) determine the θ at which SICs were allowed or bypassed. Sensors from brands Acclima, Rain Bird, Irrometer, and Water Watcher were buried at 7-10 cm depth, on plots with common bermudagrass [Cynodon dactylon (L.) Pers.]. A calibrated ECH2O probe was also installed in every plot, at the same depth, to monitor θ continuously. When comparing the ECH2O readings with θ sensed by the SMSs, significant correlations were found for the three Acclima RS500 (AC) systems tested, and for two of the three systems of Irrometer Watermark 200SS/WEM (IM) and Rain Bird MS-100 (RB). Most of the SMS-based treatments bypassed the majority of the SICs during rainy periods, and allowed irrigation during the dry periods. On average, 71% of the SICs were bypassed by the SMS treatments, without detriment to the turfgrass quality. However, most of the SMSs were not found to be precision instruments, because sometimes they bypassed SICs and sometimes they did not, even when reading the same or a lower θ. Considering the average θ range of over which the different SMS treatments always allowed or always bypassed irrigation, brand AC resulted in the significantly narrowest range (1.4%) followed by RB (3.2%), suggesting that they were more consistent and precise in measuring θ than Water Watcher DPS-100 (WW) and IM (7.4 and 7.8%, respectively). These results are consistent with the reported water savings achieved by these SMSs in related studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号