首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paddy rice samples were parboiled by soaking at 65 °C for 180 min and steaming at 96 °C for 2–10 min, and then dried to achieve the final moisture content of 11% ± 1%. The degree of starch gelatinization(DSG) and several quality attributes(head rice yield(HRY), color value and hardness) of parboiled rice were measured. Results showed that DSG(46.8%–77.9%), color value(18.08–19.04) and hardness(118.6–219.2 N) all increased following steaming. In contrast, the HRY increased(64.8%–67.1%) for steaming times between 2–4 min but decreased(67.1%–65.0%) for steaming times between 4–10 min. Linear relations between DSG and color value(R~2 = 0.87), and DSG and hardness(R~2 = 0.88) were observed. The suitable DSG of parboiled rice leading to the highest HRY was found to be 62.5%, obtained following 4 min of steaming.  相似文献   

2.
Moisture distribution in individual polished rice grains was observed during soaking by magnetic resonance (MR) imaging, and a nuclear magnetic resonance (NMR) signal intensity profile (SI-profile) was generated from the MR image. The water penetration pattern during soaking roughly showed dissimilar trends between different varieties of japonica and japonica-indica hybrid rice. NMR signal intensity at the completion of water absorption varied within each grain; high at the periphery and the central region and low in the area between the periphery and the central region. High moisture content within the central region is due to loosely packed starch granules. The SI-profile was congruent for grains of the same variety harvested in different regions and years and characterized a grain moisture distribution for each variety. Moisture distribution was compared using SI-profiles for varieties with different amylose contents and new varieties bred for specific end-uses in Japan. The NMR signal intensity, which is related to the moisture content, at the surface of soaked grain was negatively correlated to the grain amylose content. The NMR signal intensities at the surface of soaked grain negatively correlated with the overall hardness of the cooked rice grain as measured by the single-grain low-high compression test.  相似文献   

3.
The hypothesis was tested that certain physico-chemical characteristics might be used as indicators of total starch availability and rate of starch availability of milled rice. Milled unparboiled (uPB) and parboiled (PB) rice samples (n=93) were characterized using standardized methods of physical tests and chemical analyses and anin vitromethod was used for measuring the rate of starch digestion on a subsample of rice (n=26). The rice varieties were dominated by medium long, bold rice grain with high amylose rice and intermediate gelatinization temperature (GT), but a wide range in all characteristics was measured. Small amounts of resistant starch (RS) were measured in the cooked rice, indicating virtually complete starch availability. The RS of PB rice (0·4 g/100 g rice as eaten) was significantly (P<0·004) higher than the RS of uPB rice (0·1 g/100 g) however. The rate of starch digestion was significantly affected by both variety and parboiling. The starch digestion index (SDI) values of the PB samples (mean value 73·7) were significantly (P<0·001) lower than those of the uPB samples (mean value 79·0). The apparent amylose content (AC) was the strongest determinant for SDI in both uPB and PB rice. The widths and shapes of the raw grains and the elongation after cooking were correlated significantly with SDI values for the uPB rice, while the relatively mild parboiling procedure followed in this study eliminated this correlation. The minimum cooking times were correlated significantly with the SDI values in the uPB samples.  相似文献   

4.
Heat soaking is an essential factor deciding the final quality of hard-to-cook grains. In this study, the morphological structures, visualization features, and physicochemical characteristics of adlay seeds soaked at 30–70 °C were investigated compared with waxy rice (easy to cook). The morphology of macromolecules and section cracks were observed by scanning electron microscopy and light microscopy as these are the crucial factors for penetrate water penetration, which showed that starch granules were slightly eroded when adlay seeds were soaked at 70 °C. The MRI images showed that at higher soaking temperatures, the moisture of soaked adlay seeds was distributed more evenly across a gradient. Meanwhile, heat soaking has a minor effect on starch and protein content of adlay seeds, and the proportion of bound water of adlay seeds slightly declined after heat soaking. Moreover, hardness analysis and pasting measurements exhibited structural changes and viscosity transition in the grains. However, the contribution of heat soaking to the infrared spectrogram and relative crystallinity of adlay seeds was insignificant. This study provides effective methods to evaluate changes in adlay seeds during heat soaking and explains why it is hard to cook.  相似文献   

5.
以水稻糖质胚乳突变体Sug-11与其野生型对照中花11为材料,通过对两者籽粒中可溶性总糖、蔗糖含量和淀粉含量以及有关淀粉品质理化指标的比较,结合籽粒灌浆过程中糖类物质含量、淀粉合成代谢关键酶活性和相关同工型基因转录表达水平的动态测定,从籽粒淀粉合成代谢角度,对水稻糖质突变体Sug-11的籽粒糖类含量变化和千粒重下降的生理原因进行了分析。结果表明,Sug-11糖质突变体与其野生型在灌浆初期的可溶性糖和蔗糖含量差异并不明显,随着籽粒灌浆进程,两者间的籽粒糖分含量差异在灌浆中后期逐步趋于明显;与野生型相比,Sug-11糖质胚乳突变体的稻米直链淀粉含量和直链淀粉碘蓝值显著下降,而淀粉溶解度和支链淀粉碘蓝值则显著升高,糖质胚乳突变对稻米淀粉的理化特性也产生了明显的影响;在籽粒淀粉合成代谢的几个关键酶中,Sug-11糖质突变体籽粒中的DBE活性及其在灌浆过程中的动态变化与其野生型存在明显差异,揭示了胚乳糖质突变体Sug-11籽粒中淀粉积累减少、糖分含量增加主要是由籽粒灌浆中后期的PUL转录表达水平和DBE活性的大幅下降所引起的,而Sug-11的籽粒灌浆不良和千粒重下降等现象,则与其ADPGase活性在籽粒灌浆前期的显著下降存在一定的联系。  相似文献   

6.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

7.
《Plant Production Science》2013,16(4):455-463
Abstract

Abstract: We investigated the effects of soaking temperature and duration on the germinability of seeds of rice (Oryza sativa L., cv. Koganemochi, Gohyakumangoku, and Koshihikari) that had been stored for a long period. The germinability of the seeds soaked at 5ºC for 5 d was markedly lower than that of seeds soaked at 12ºC for 5 d. The germinability of the seeds soaked at 5ºC for 24 hr was not increased by subsequent soaking at 12ºC for 4 d. On the other hand, the germinability of the seeds soaked either at 12ºC for 24 hr or at 30ºC for 80 min was similar to that of seeds soaked at 12ºC for 5 d, even when followed by treatment at 5ºC. Thus, the soaking temperature during the first 24 hr was most important for the germination of rice seeds that had been stored for a long period. Western blotting analysis revealed characteristic expression patterns of α-amylase isoforms in cultivars correlating with the germinability after soaking at a low-temperature.  相似文献   

8.
The optimum conditions for producing rice starch enriched in slowly digestible and resistant fractions by citric acid treatment determined by a response surface methodology (RSM) model equation, were: reaction temperature, 128.4 °C; reaction time, 13.8 h; and citric acid, 2.62 mmol/20 g starch. The slowly digestible and resistant starch fractions of the optimally acid-treated rice starch totalled 54.1%, which was 28.1% higher than the control. The slowly digestible and resistant fractions of the acid-treated rice starch did not differ significantly after heat treatment, whereas those of raw rice starch decreased by 49.6–63.8%, depending on the type of heat treatment (cooking at 100 °C or autoclaving). The slowly digestible fraction of the acid-treated starch increased by 8.9–14.2%. After autoclaving, the glucose response of the acid-treated starch was lower than untreated starch, but similar to that of Novelose 330. After heat treatment, the rate of blood glucose decrease was slower for the acid-treated starch than for Novelose 330. Compared to raw rice starch, the acid-treated starch exhibited increases in apparent amylose content, blue value, dextrose equivalent, cold-water solubility and transmittance, and decreases in wavelength of maximum absorbance, viscosity, and gel-forming ability.  相似文献   

9.
富含抗性淀粉水稻突变体的淀粉特性   总被引:16,自引:0,他引:16  
 从杂交水稻优异恢复系R7954诱变筛选了1个富含抗性淀粉的突变体RS111。该突变体热米饭中抗性淀粉的含量高达7.0%,是其野生型的2.4倍。突变体的淀粉颗粒形态、DSC和多晶衍射的曲线和参数与野生型明显不同,表现为淀粉颗粒大小较为一致,圆形和卵形淀粉颗粒所占比率较高,溶晶起始温度(TO)、最高温度(TP)、回落温度(TC)、焓变(ΔHGEL)及结晶度更低。突变体的表观直链淀粉、粗脂肪和粗纤维的含量显著提高。  相似文献   

10.
Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90°C of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.  相似文献   

11.
In this study we evaluated the thermo-mechanical properties of maize starch pastes (80% wt/wt) under the effect of exogenous lysophosphatidylcholine (LPC) using differential scanning calorimetry (DSC), dynamic mechanical spectrometry (DMS), and scanning electron microscopy (SEM). Particular attention was paid to the development of the amylose-LPC inclusion complex. Results from SEM and DSC showed that with no exogenous LPC, granular maize starch developed the amylose network structure for starch gelling at 80–95 °C. In comparison, at 1.86 and 3.35% of LPC, heating up to 130 °C was needed to develop the three-dimensional network required for starch gelling. Results showed that at these LPC concentrations LPC interacted mainly with amylose within the starch granule. At concentrations ≥8.26% the LPC interacted with amylose both inside the granule and on the granule's surface. At such LPC concentrations heating to 130 °C did not fully develop the starch network structure for gelling. These results suggested that a higher thermal stability was achieved by starch granules because of LPC inclusion complex formation. DSC or DMS did not detect the development of this complex, probably because its formation took place below the onset of gelatinization under conditions of limited molecular mobility. Subsequently, a lower level of organization (i.e. complex in form I) was achieved than in the complex developed at high temperature and water excess (i.e. complex in form II). On the other hand, the changes in the starch granule structure observed by SEM as a function of the time–temperature variable were well described by the phase shift angle (δ) rheograms for starch pastes with and without addition of LPC.  相似文献   

12.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

13.
为给面条小麦亲本材料的筛选提供可靠依据,用SDS-PAGE和STS-PCR结合的方法鉴定了24个品种的Wx蛋白亚基组成,测定了这些品种的淀粉含量、膨胀势和RVA参数。结果表明,与正常材料相比,Wx蛋白亚基缺失材料的胚乳中直链淀粉含量减少,支链淀粉和总淀粉含量变化不明显,Wx蛋白亚基缺失的数目越多,直链淀粉含量减少得就越多,糯麦的直链淀粉含量最少。在本研究参试材料特定遗传背景干扰的情况下,在Wx蛋白的三个亚基中Wx-A1蛋白亚基对直链淀粉含量影响最大。Wx蛋白亚基的缺失还使面粉的膨胀势、RVA参数的高峰粘度、崩解值增大,峰值时间延长,而使最终粘度、回生值和糊化温度降低,Wx蛋白亚基缺失的数目越多,这些特性变化的幅度越大。在缺失单个亚基的情况下,Wx-B1亚基的缺失使小麦粉的淀粉特性表现最好。相关分析表明,直链淀粉合成数量的减少是导致上述淀粉特性发生变化的主要原因。  相似文献   

14.
The influence of different nitrate concentrations in combination with three cultivation temperatures on the total fatty acids (TFA) and eicosapentaenoic acid (EPA) content of Nannochloropsis salina was investigated. This was done by virtue of turbidostatic controlled cultures. This control mode enables the cultivation of microalgae under defined conditions and, therefore, the influence of single parameters on the fatty acid synthesis of Nannochloropsis salina can be investigated. Generally, growth rates decreased under low nitrate concentrations. This effect was reinforced when cells were exposed to lower temperatures (from 26 °C down to 17 °C). Considering the cellular TFA concentration, nitrate provoked an increase of TFA under nitrate limitation up to 70% of the biological dry mass (BDM). In contrast to this finding, the EPA content decreased under low nitrate concentrations. Nevertheless, both TFA and EPA contents increased under a low culture temperature (17 °C) compared to moderate temperatures of 21 °C and 26 °C. In terms of biotechnological production, the growth rate has to be taken into account. Therefore, for both TFA and EPA production, a temperature of 17 °C and a nitrate concentration of 1800 μmol L−1 afforded the highest productivities. Temperatures of 21 °C and 26 °C in combination with 1800 μmol L−1 nitrate showed slightly lower TFA and EPA productivities.  相似文献   

15.
This study was aimed at investigating the effect of low polarity water (LPW) on the extraction of bioactive compounds from Fucus vesiculosus and to examine the influence of temperature on the extraction yield, total phenolic content, crude alginate, fucoidan content, and antioxidant activity. The extractions were performed at the temperature range of 120–200 °C with 10 °C increments, and the extraction yield increased linearly with the increasing extraction temperature, with the highest yields at 170–200 °C and with the maximum extraction yield (25.99 ± 2.22%) at 190 °C. The total phenolic content also increased with increasing temperature. The extracts showed a high antioxidant activity, measured with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals scavenging and metal-chelating activities of 0.14 mg/mL and 1.39 mg/mL, respectively. The highest yield of alginate and crude fucoidan were found at 140 °C and 160 °C, respectively. The alginate and crude fucoidan contents of the extract were 2.13% and 22.3%, respectively. This study showed that the extraction of bioactive compounds from seaweed could be selectively maximized by controlling the polarity of an environmentally friendly solvent.  相似文献   

16.
Three types of rice cultivars (indica, japonica and hybrid rice) with four levels of amylose were selected for assessing variability in starch digestibility. A vitro enzymatic starch digestion method was applied to estimate the glycemic index in vivo based on the kinetics of starch hydrolysis in vitro. The results indicated that significant differences in term of glycemic response were observed in three types of rice. Amylose content had an obviously impact on the estimated glycemic score (EGS) value and resistant starch (RS) content. The contents of RS were increased with the increasing amylose in the same type of rice. Japonica rice was significantly lower in RS content compared to indica rice and hybrid rice with similar amylose. The high amylose rice cultivar ZF201, which was characterized by low major RVA parameters, i.e. peak viscosity (PKV), hot paste viscosity (HPV) and cool paste viscosity (CPV), were obviously higher in RS content and lower in EGS. The retrogradation of cooked rice led to a reduction of HI and EGS of all varieties. Starch hydrolysis tends to be more quick and complete for the waxy and low amylose rice than for the intermediate and high amylose rice.  相似文献   

17.
Vital wheat gluten and lecithin (GL) (50:50, w/w) were dry blended in a coffee grinder and a 9.5% (w/v) aqueous slurry was jet-cooked (steam pressures of 65 psi/g inlet and 40 psi/g outlet) to disaggregate wheat gluten and facilitate better dispersion of the two components. The jet-cooked material was freeze-dried and stored at 0 °C for future use. The GL blend was added to pure food grade common maize and rice starch at concentrations of 0 (control), 6, 11, 16, and 21%. Starch gelatinization and retrogradation temperature transitions were determined using Differential Scanning Calorimetry (DSC). From the DSC profiles, the change in the ΔH value was used as an indication of starch retrogradation, where a higher ΔH value indicated higher retrogradation. The ΔH values of the blends at 4 °C had higher values than the −20 °C and the ambient (25 °C) storage temperatures. Overall, the 21% GL/starch blends reduced retrogradation by 50%. The lower amylose content of rice starch relative to maize starch was reflected in Rapid Visco Amylograph (RVA) measurements of peak viscosity, and similarly, Texture Analyzer (TA) measurements indicated that maize starch gel is firmer than rice starch gel. Retrogradation was also evaluated by observing G′, the shear storage modulus, as a function of time after running a standard pasting curve. Using this method, it appears that GL has a significant effect on maize starch retrogradation, since low concentrations (<0.4%, w/w) reduced G′ up to 40%. The opposite behavior was seen in rice starch, where G′ increased directly with added GL. It appears that the amylose level in the rice starch is too low to be affected by the GL, and the increase seen in G′ is most likely due to added solids.  相似文献   

18.
Milled rice from 11 varieties, with amylose levels from 1.2 to 35.6% dry base, were collected to study the impacts of amylose content on starch retrogradation and textural properties of cooked rice during storage. The relationship between amylose content and different properties was determined using Pearson correlation. Starch retrogradation enthalpy (ΔHr) of cooked rice was determined by differential scanning calorimetry. ΔHr values were found to be positively correlated with amylose content (0.603 ≤ r ≤ 0.822, P < 0.01) during storage. Textural properties were determined by a Texture Analyser. The hardness of cooked rice showed a positive correlation with amylose content (0.706 ≤ r ≤ 0.866, P < 0.01) and a positive correlation with ΔHr of cooked rice (r = 0.650, P < 0.01) during storage. The adhesiveness showed a negative correlation with amylose content (−0.929 ≤ r ≤ −0.678, P < 0.01) and a negative correlation with ΔHr of cooked rice (r = −0.833, P < 0.01) during storage. Hardness showed a negative correlation with adhesiveness (r = −0.820, P < 0.01). These results indicated that amylose content has significant effects on starch retrogradation and textural properties of cooked rice. The cooked rice with high amylose content is easy to retrograde, the cooked rice with low amylose content retrograded slowly. Sarch retrogradation contributes to the changes of textural properties of cooked rice during storage.  相似文献   

19.
The glass transition temperatures (Tg) of starch with different amylose/amylopectin ratios were systematically studied by a high-speed DSC. The cornstarches with different amylose contents (waxy 0; maize 23, G50 50 and G80 80) were used as model materials. The high heating speed (up to 300 °C/min) allows the weak Tg of starch to be visible and the true Tg was calculated by applying linear regression to the results from different heating rates. It is confirmed for the first time, that the higher the amylose content is, the higher the Tg is for the same kind of starch. The sequence of true Tg of cornstarch is G80 > G50 > maize > waxy when samples contain the same moisture content, which corresponds to their amylose/amylopectin ratio. It was found that Tg was increased from about 52 to 60 °C with increasing amylose content from 0 to 80 for the samples containing about 13% moisture. The microstructure and phase transition were used to explain this phenomenon, in particular the multiphase transitions that occur in high-amylose starches at higher temperatures, and the gel-ball structure of gelatinized amylopectin.  相似文献   

20.
Soaking is an essential step in wet-milling of rice flour. The effects of soaking duration and temperature (5 and 25 °C) on the properties of rice flour have been investigated. The uptake of water by rice kernels increased with temperature and reached a plateau at about 30–35%. Protein, lipid, and ash leached out during soaking. The moisture content after soaking appeared to be a key factor on loosening the structure of rice kernels, which resulted in the production of small particle flours with little starch damage. The particle size of flours did not alter the gelatinisation temperature (Toand Tp) in DSC thermograms. Small particle and low lipid content flours appeared to have high peak viscosity measured by RVA. The change in microstructure of rice kernels during soaking was also examined by SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号