首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of14 C-Carbofuran was studied in sterilized, unsterilized and green manure amended clay soil under moist and flooded conditions overa period of 30 days. The14 C mass balance showed that carbofuran did not undergo any degradation in sterilized moist soil. In sterilized flooded soil bound residues were formed to the extent of about 47% of the applied radioactivity at the end of 30 days. Carbofuran underwent considerable degradation in unsterilized moist and flooded soils. In moist soil about 48% of the applied14 C activity was recovered as bound activity while in flooded soil, about 23% of the activity was bound. Green manure amendment resulted in formation of more bound residues under moist conditions while it enhanced the degradation of carbofuran under flooded conditions. In flooded amended soil about 44% of the appliedl4 C-activity was recovered as against about 54% in the unamended flooded soil. The notable degradation products formed under flooded soil conditions were 3-keto carbofuran and 3-hydroxy carbofuran.  相似文献   

2.
[triazine-ring-14C] simazine and [benzene-ring-14C] bentazon were added to the epipedon of a Luvisol from loess with and without maize shoots or roots (2 g/100 g soil) and mineralization proceeded in accordance with the standardized BBA degradation method at 50% of the maximum water holding capacity of the soil and at 22°C. The same degradation study was conducted using maize shoots (simazine) and maize roots (bentazon) which had taken up either 14C-simazine or 14C-bentazon from soil application. After 93 days of incubation 6.6% (simazine) or 7.2% (bentazon) of this plant incorporated 14C was mineralized to 14CO2. This was 4–10 times greater than the mineralization of active ingredients applied to the soil and 4–6 times higher when compared to variants which in addition received maize shoots (simazine) or roots (bentazon) as an additional energy source for microbial development. Apparently as a consequence of the more intensified degradation processes, the bound residue fractions were higher by a factor of 2 when the residual radiocarbon reached the soil already incorporated into plant material.  相似文献   

3.
Analysis of [l4C]respiratory Quinones synthesized in soil for 6 h after spiking with [U-14C]glucose, [U-l4C]glycine, and [1,2-l4C]acetate enabled to fingerprint the microorganisms metabolizing each substrate in soil and to determine the whole structure of the microbial communities at the same time. The [l4C]- Quinones synthesized from [U-l4C] glucose were the same as those from [U-l4C] gIycinc in soil, suggesting that the same microbial groups metabolized glucose and glycine under the given conditions. No [l4C]quinones from [1,2- 14C] acetate were detected in soil, indicating that the metabolism of acetate by microorganisms is negligible. The profiles of [l4C]quinones from [U-l4C]- glucose were compared between Nagoya University Farm soils subjected to 4 different fertilizing practices. The soils receiving farmyard manure contained [l4C]menaquinones with highly hydrated isoprenoid units, which indicated the presence of Actinobacteria metabolizing glucose. The soil receiving only chemical fertilizers contained [14C]ubiquinone with 8 isoprenoid units (Q-8), indicating the presence of beta and gamma subdivisions of Proteobacteria. All the 4 soils were characterized by the high proportions of [14C] MK-6 and a mixture of [l4C]MK-8(H4) and [l4C]MK-9. The Q-9 and Q-10(H2) indicators of fungi, were not labeled under most of the conditions.  相似文献   

4.
STUDIES ON THE DECOMPOSITION OF PLANT MATERIAL IN SOIL   总被引:2,自引:0,他引:2  
The organic matter in soils containing decomposing 14C-labelled ryegrass was fractionated chemically. Earlier work on these soils had shown that they contained a small fraction, heavily labelled relative to the rest of the soil organic matter, that was mineralized when the partially sterilized soils were incubated. Reagents effective in extracting heavily labelled-C included cold o.in HC1, boiling saturated CaSO4 solution, and o.in Ba(OH)2, but neither these nor any other reagent tested could extract material as heavily labelled as that mineralized when partially sterilized soil was incubated. Reagents that extract heavily labelled-C are poor extractants for humified material and are not strongly hydrolytic: the more vigorous the hydrolysis the smaller the proportion of labelled-C in the hydrolysate. The amounts of labelled-C dissolved by Ba(OH)2 from soils sampled after different periods in the field were directly proportional to the amounts of labelled-C mineralized by those soils when partially sterilized (by exposure to CHC13 vapour), inoculated and incubated. Balance sheets are presented for the distribution of labelled and unlabelled-C in fractions separated by hydrolysis with 6N HC1, by NaOH extraction, by neutral pyrophosphate extraction, and by oxidation with H2O2. The fraction remaining after hydrolysis with 6N HC1 was the most lightly labelled and had the widest C/N ratio. The percentage of labelled-C in the material dissolved by alkali or by pyrophosphate was little more than in the material not dissolved, despite the presence in the soil of fractions differing at least twenty-fold in intensity of labelling.  相似文献   

5.
[14C] and [35S]labeled lignosulfonates (LS) or [14C]labeled coniferyl alcohol dehydropolymer (DHP) were aerobically incubated in soil for 17 weeks. Respiratory 14CO2 was compared with that from DHP or that from [U14C]cellulose. Less CO2 was released from ring and side chain carbons of LS than from DHP, though similar amounts of CO2 were released from the methoxyl groups of both compounds. After incubation, the soil samples were exhaustively extracted with water and then with a sodium pyrophosphate-NaOH solution. The water solubility of the originally completely-soluble LS carbons was greatly decreased by incubation, and a large portion of the extracted 35S was detected as sulfate. The pyrophosphate extract was separated into humic and fulvie acids. The humic acid from soils incubated with LS contained low 35S activity and a similar 14C activity to that from soils incubated with DHP. The fulvic acid from the soils incubated with LS contained higher amounts of 14C (and 35S) than that of the soils incubated with DHP. More side chain 14C activity than other 14C activity was found in both, the water extract and the fulvic acid from soils incubated with LS. The high 35S together with the high side chain 14C activity probably indicates an elimination of the side chain carbons together with sulfonic acid groups. Anaerobic incubation of soil with LS or DHP promoted breakdown and incorporation of LS and DHP into humus much less than aerobic incubation. The possible reduction in potential pollution from lignosulfonates due to the observed transformations in soil are discussed.  相似文献   

6.
The fumigation technique for the estimation of microbial biomass-C was applied at different periods after amendment of three agricultural soils with 14C-labelled glucose, cellulose and wheat roots. By daily monitoring of evolved CO2 and 14CO2 it was recognized that the CO2 from the degradation of the amendment had an interfering effect on biomass calculations. Biomass estimations were valid only when CO2 from the degradation of the amendment had slowed, 3 days after glucose amendment, 14 days after addition of cellulose, and 28 days after amendment with wheat roots.Fumigated, reinoculated soils degraded glucose faster than did the corresponding control samples, causing an overestimation of biomass-C. By contrast biomass-C was underestimated in soils amended with cellulose or wheat roots due to lower rates of degradation of the added C-sources in fumigated samples. The reduced capacity for degradation of complex organic materials may be due to smaller decomposer populations in inoculated fumigated soils; populations recovered within 20 days to only 10–20% of their original biomass-C content. Re-establishment of biomass in fumigated samples was tested with inocula in amounts increasing to 10, 50 and 100% of corresponding control samples. The K-factor was not influenced by these treatments. Estimates of biomass in soil during the rapid phase of degradation of wheat roots were influenced by the amount of inoculum.  相似文献   

7.
Zinc ammonium acetate (ZAA), typically applied to soils in anhydrous ammonia as a carrier, has been used to improve corn (Zea maysL.) productivity. This study aimed to determine the fate of ZAA in soils as influenced by soil type (sandy, silt, and clay loam), sterilization (sterile and non-sterile), and two carriers (H2O and NH4OH). A 16 d laboratory incubation experiment with 14C-ZAA showed that total recovery of carbon-14 (14C) from 14CO2 trap and soil extraction by CaCl2 ranged from 72% to 94% in the first 8 d for sterilized soils. However, < 17% 14C was found in non-sterilized soils. Most 14C recovered in sterilized soil was associated with soil extraction, and relatively little was found in the CO2 traps. All sterilized soils provided similar 14C recoveries except the sandy loam. Slightly more 14C was extracted from the soil when NH4OH was the ZAA carrier rather than water. Conversely, recovery of 14CO2 continued to increase during the 16 d incubation, but started faster when water was the ZAA carrier. Microbial activity appeared to be instrumental in the assimilation and disappearance of ZAA.  相似文献   

8.
Summary Degradation of the herbicide phosphinothricin (L-homoalanine-4-yl-(methyl)-phosphinic acid) in a phaeozem was investigated by monitoring the 14CO2 release from [1-14C] and [3,4-14C]phosphinothricin. The degradation was largely due to microbial activity, since the rate decreased by more than 95% when the soil was sterilized by -radiation. Data obtained with both labels suggested that decarboxylation of phosphinothricin preceded oxidation of its C-atoms 3 and 4, since a metabolite, probably 3-methylphosphinico-propanoic acid, was only labelled when [3,4-14C]phosphinothricin was used as the substrate. Maximum rates of 14CO2 production from both the 1- and 3,4-label positions occurred without a lag phase during the breakdown of phosphinothricin as monitored for a total of 30 days at 5-day intervals. This result indicated that a phosphinothricin-degrading microbial community was already present in the soil. With low concentrations of [1-14C]phosphinothricin (10.7 mg kg-1 soil), complete decarboxylation at 25°C was observed within 30 days of incubation, compared to 15.9% 14CO2 release from [3,4-14C]phosphinothricin. Increasing the quantity of the herbicide in the soil (10.7–1372 mg kg-1) resulted in increased degradation rates, irrespective of whether the herbicide was labelled in the positions 1 or 3 and 4. Addition of glucose and other carbohydrates stimulated 14CO2 release while addition of a yeast extract had a negative effect. Glucose stimulation was reversed by ammonium nitrate, suggesting that the microorganisms were using the herbicide as a source of N.  相似文献   

9.
Sterilized soil is often used, for example in degradation studies, sorption experiments, microbiological tests and plant test systems, to distinguish between microbial processes and abiotic reactions. The most commonly used technique for sterilization is autoclaving of the soil. Another technique is irradiation with high‐level gamma radiation (γ‐radiation). One major drawback of sterilization procedures is the possible alteration of the structure of soil components, for example the organic matter. A change in the chemical structure of the soil organic matter can cause different reactions in the above‐mentioned experiments and hence interfere with the aim of clearly distinguishing between biotic and abiotic processes. Two soils (Gleyic Cambisol and Orthic Luvisol) were sterilized by two γ‐irradiation procedures (4 kGy hour?1 for 9 hours and 1.3 kGy hour?1 for 27 hours) and repeated autoclaving at 121°C. Gentle physical aggregate fractionation of the sterilized soils revealed a decrease in the aggregation of the soil, which was reflected in an increase of the clay fraction. Subsequent analysis of the aqueous phase revealed much more dissolved organic matter (DOM) in the γ‐sterilized and autoclaved soils than in the untreated soils. Ultraviolet (UV) and fluorescence spectra of the DOM showed a decrease in the aromaticity and polycondensation of the dissolved organic carbon (DOC). 13C cross‐polarization/magic‐angle spinning nuclear magnetic resonance (13C‐CP/MAS NMR) spectra of the unfractionated soils and their respective soil fractions before and after sterilization showed that the most important change occurred in the carbohydrate and N‐alkyl region, the main components of microorganisms. In general, the impact of the sterilization method was stronger for autoclaving. The γ‐sterilized soils and fractions displayed both fewer and smaller changes in the soil organic matter.  相似文献   

10.
Biotic and abiotic decomposition of organic matter in soils The problem area of organic matter decomposition in soils by biotic, abiotic and photochemical mechanisms is tested under administration of uniformly 14C-labelled wheat straw, humic of fulvic acids; furthermore by the use of conventional methods. In four separate test runs, based on Hapludalf-Ah soil, formed in loess, as well as on Ah soil of a spodic Dystrochrept in pleistocene sand, measurements over years - altogether 57 measurement cycles - revealed similar decomposition rates of 14C fulvic and 14C humic acid. The approximate magnitudes of turnover were: biotic: abiotic (Hg-sterilization): biotic + UV-irradiation: abiotic + UV-irradiation = 100:20:70:50. The sterilized samples continued to release CO2. Biotic + UV showed losses, compared with biotic, by partial UV sterilization. Abiotic + UV indicated increasing CO2 release, compared with abiotic only, due to additional photochemical decomposition. In a larger program with radioactive as well as conventional methods of CO2 measurement decomposition rates in different soils were tested under biotic, abiotic and photochemical condition in presence of metal ions, such as iron, aluminium, copper, zinc, lead and mercury. The impact by the added metals can be summerized as follows: Calcium and aluminium are favoring the organic matter decomposition under biotic conditions, while mercury, lead, copper, zinc and iron are rather inhibitive. Contrary, under biotic/steril conditions copper and especially mercury, further zinc and lead, at lower extent also calcium, impede CO2 liberation. Since there are but small differences among the various test soils, soil own parameters seem to exert under abiotic conditions low importance only. Under UV irradiation calcium had in the biotic milieu high, in the steril/abiotic milieu a lower increasing effect upon COz liberation. Also iron indicates a stimulating effect under contemporary UV irradiation, which at lower level applies to lead and mercury too, particularly in connection with the sandloess Hapludalf of Harburg. Based on the observed CO2 release also under abiotic/steril conditions final tests were conducted with calcinated quartzsand in contrast to soil, otherwise again under biotic, abiotic, as well as biotic or abiotic + UV conditions. Also in these calcinated sands 14CO2 release from the 14C labelled straw continued. Addition of increasing amounts of aluminiumlactate causes decreasing 14CO2 rates. An even stronger inhibition was produced by addition of zinclactate.  相似文献   

11.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period.  相似文献   

12.
Glucose or starch labelled with 14C was mixed thoroughly into slurried soils. Aggregates of different sizes were obtained from the soils as they dried. The labelled substrates were considered to be distributed in both micro- and macropores in the aggregates. Control samples (labelled substrates in macropores only) were prepared by adding the labelled carbohydrates after the formation of the aggregates. The various samples were sterilized by γ-irradiation and stored at ?15°C.Samples were wetted to about ?20kPa, inoculated with soil organisms, and incubated for 4 weeks at 28°C in closed systems, which enabled regular measurement of 14CO2 released.Based on the 14CO2 released, it was concluded that starch was protected from microbial attack when present in micropores in aggregates made from fine sandy loam.After incubation samples were dried and rewetted. The flush of 14CO2 released was twice as big for samples containing labelled starch compared with glucose, showing that disruption of aggregates, containing residual starch, and rearrangements of soil components are as important as chemical and biological factors in causing the flush of CO2 resulting from wetting a soil. Mechanical disruption of the aggregates resulted in a similar flush of 14CO2.  相似文献   

13.
[l4C]exudation from fungal propagules on 5 soils over 4–24 h was studied in relation to mycostasis. [l4C]exudation from sclerotia of Macrophomina phaseolina, chlamydospores of Thielaviopsis basicola, and conidia of Cochliobolus victoriae after 24 h on two sandy loam soils and a loam was generally greater than exudation on the two clay loam soils. Results were similar for conidia of Stemphylium sarcinaeforme but differences were not statistically significant. When natural soils were pulsed with [14C]glucose, 14CO2 evolved by the soil microflora over 2–12 h showed a similar trend. [14C]exudation from M. phaseolina sclerotia and C. victoriae conidia incubated on soils was greater than that from propagules incubated aseptically on a bed of sand through which water percolated at a flow rate sufficient to inhibit germination. Propagules of C. victoriae, M. phaseolinia and T. basicola germinated greater on one or more of the coarse-textured soils than on fine-textured soils. Using γ-irradiated soils, more [l4C]exudate was adsorbed by the clay loams than by the loam and sandy loam soils, suggesting that the adsorptive capacity of soils may be an important factor in controlling fungal utilization of soluble nutrients. Fungal germination in soil appears to be jointly influenced by two opposing tendencies: the ease with which germination occurs in response to exogenous nutrients and the amount of endogenous substrate lost or retained.  相似文献   

14.
Two soils, one a sandy loam and the other of relatively high clay content, were incubated with [14C(U)]gtucose and [15N](NH4)2SO4 for 101 days, either under continuously moist conditions, or with intermittent drying of soils. Rates of evolution of 14CO2, decline in residual organic 14C, and net immobilization and mineralization of N and 15N in the sandy loam soil were more rapid than in the clay soil. First order decay rates for the decomposition of residual 14C, after 10 days, were consistently twice as fast in the sandy loam soil. By contrast, the efficiency with which glucose was utilized within the first few days, and the amounts of C, 14C, N and 15N present as soil biomass throughout the incubation, were greater in the clay soil than in the sandy loam. Biomass 14C as a percentage of residual organic 14C, was consistently 1.5 times greater in the clay soil. Compared with soils held continuously moist, soils which were intermittently dried and remoistened contained smaller amounts of isotope-labelled biomass C and N, but overall similar amounts of total residual organic 14C and 15N. Remoistening of dried soils caused a temporary (4 days) flush in C and N mineralization rates.A simulation model describes C and N behaviour in the two soils. Three features of the model are proposed to expain short-term differences between soils in the rates of C and N turnover, viz. the clay soil (a) has a greater capacity to preserve biomass C and N (b) holds a higher proportion of microbial decay products in the near vicinity of surviving cells, and, to a lesser extent, (c) utilizes glucose and metabolic products more efficiently for biosynthetic reactions.  相似文献   

15.
The influence of water-content on atrazine degradation in soil In samples of the standard soil 2.2 (loamy sand, 3 % C, pH 7,0) and of a Luvisol (Ap-horizon, loam 1,4 % C, pH 5,2), the degradation of [ethyl-1-14C]atrazine was investigated in dependence of the soil water content. The experimental conditions were choosen in accordance with the methods proposed by the Biologische Bundesanstalt to study the degradation of pesticides in the soil. The soil water content was varied to simulate the moisture conditions observed in a soil during plant growth. Therefore, besides a steady water content of 20, 40, 60, and 80 % of the maximum water holding capacity of the soils, the soil water contents were fluctuated by 20 to 60 % of the maximum water holding capacity by passing dry air through the soil. At a concentration of 10mg atrazin/kg of soil between 4 and 6 % of the ethyl-1-carbonatom of the atrazine molecule was mineralized to CO2 within 71 days at a constant soil temperature of 22°C. In the standard soil 2.2 the mineralization in total was reduced to 2/3 compared to the degradation in the Luvisol. With decreasing water content increasing hydroxilated metabolites were formed. About 30–40 % of the applied radioactivity was determined as non-extractable residue in the soil. In general the degradation processes were more enhanced and more intense in the Luvisol as compared to the Standard soil 2.2 which again unterlines that for this type of experiments a fresh soil should be used. In conclusion, the variation of the soil water content did not have a pronounced influence on the mineralization rates of atrazine, but did influence the metabolism and the formation of certain metabolite fractions.  相似文献   

16.
This study compared the degradation of [carboxyl-14C] 2,4-dichlorophenoxyacetic acid (2,4-D) (C2,4-D) and [ring-U-14C] 2,4-D (R2,4-D) in 114 agricultural soils (0–15 cm) as affected by 2,4-D sorption and soil properties (organic carbon content, pH, clay content, carbonate content, cation exchange capacity, total microbial activity). The sample area was confined to Alberta, Canada, located 49–60° north longitude and 110–120° west latitude and soils were grouped by soil organic carbon content (SOC) (0–0.99%, 1–1.99%, 2–2.99%, 3–3.99% and >4% SOC). Degradation rates of C2,4-D and R2,4-D followed first-order kinetics in all soils. Although total microbial activity increased with increasing SOC, degradation rates and total degradation of C2,4-D and R2,4-D decreased with increasing SOC because of increased sorption of 2,4-D by soil and reduced bioavailability of 2,4-D and its metabolites. Rates of R2,4-D degradation were more limited by sorption than rates of C2,4-D degradation, possibly because of greater sorption and formation of bound residues of 2,4-D metabolites relative to the 2,4-D parent molecule. Based on the sorption and degradation parameters quantified, there were two distinct groups of soils, those with less than 1% SOC and those with greater than 1% SOC. Specifically, soils with less than 1% SOC had, on average, 2.4 times smaller soil organic carbon sorption coefficients and 1.4 times smaller 2,4-D half-lives than soils with more than 1% SOC. In regional scale model simulations of pesticide leaching to groundwater, covering many soils, input parameters for each pesticide include a single soil organic carbon sorption coefficient and single half-life value. Our results imply, however, that the approach to these regional scale assessments could be improved by adjusting the values of these two input parameters according to SOC. Specifically, this study indicates that for 2,4-D and Alberta soils containing less than 1% SOC, the 2,4-D pesticide parameters obtained from generic databases should be divided by 2.5 (soil organic carbon sorption coefficient) and 1.5 (half-life value).  相似文献   

17.
Four soil-water tensions ranging from 10 kPa to 1.5 MPa were employed to study the effect of soil-water tension on methyl parathion degradation, metabolism and bound-residue formation in two soils. Uniformly ring-labeled [14C]methyl parathion was used. Mineralization was rapid in soils at 10 and 33 kPa. Results from the disappearance of 14C-activity indicated that methyl parathion could be also rapidly mineralized in soils at 100 kPa, while mineralization at 1.5 MPa was slower. Nonextractable 14C-activity (bound residues) was formed rapidly during 7–14 days in the soils maintained at 100 kPa and lower. The formation of nonextractable 14C-activity in the 1.5 MPa soils was slower but increased steadily during 28 days. Since no methyl aminoparathion was detected, it was suggested that the insecticide was hydrolyzed initially to p-nitrophenol and subsequently was reduced to p-aminophenol. The reduction was favored in moist soils (10 and 33 kPa) but was resisted in dry soil (1.5 MPa).  相似文献   

18.
Nitrate leaching from intensively and extensively grazed grassland measured with suction cup samplers and sampling of soil mineral‐N II Variability of NO3 and NH4 values and degree of accuracy of the measurement methods Data from a grazing experiment — comparison of mean values, see Anger et al. (2002) — were used to estimate within‐field variability to asses the accuracy of two frequently used methods of estimating NO3 leaching on pastures: (1) the ceramic suction cup sampling (with 34 cups ha—1 minimum, calculated climatic water balance, 4 leaching periods) and (2) using the soil mineral‐N method (vertical soil NO3 and NH4 content in 0—0.9 m (Nmin) measured at the beginning and end of two winters on a minimum of 10 different areas of 50 m2 each with a minimum of 7 different sample cores). These methods were used on two permanent pastures with high mean stocking density of cattle of 4.9 LU ha—1 on 1.3 ha with N‐fertilization of 250 kg N ha—1 (= intensive [I]) and 2.9 LU without N fertilization on a 2.2 ha pasture (= extensive [E]). The results show that NO3 leaching on pastures was largely due to few selectively extremely high NO3 amounts under a few excrement spots — mainly urine spots — which would not be sampled representatively with an acceptable effort in a conventional grazing experiment. In both grazing treatments, very large spatial variation occurred. This was greater between the different suction cups than between the compound mineral N samples of each area. Therefore, a marked skewness and kurtosis demonstrated a non‐normal distribution of samples from suction cups, while mineral N values did not show this effect consistently. Sampling selected mostly spots without noticeable influence of excrement, but a few samples with very high values identified evidently urine spots from summer or autumn grazing. The differences in mean coefficient of variation (CV) between the grazing treatments and estimation methods were mainly based on the stocking rate and the density of excrement spots. CV values were 131 % [I] / 242 % [E] for NO3 leaching measured with suction cup samplers and of 71 % [I] / 116 % [E] for soil NO3 values and 24 % [I] / 34 % [E] for soil NH4 values in 0—0.9 m according Nmin‐method. Results of the Nmin method are obviously inaccurate even with a sampling intensity much greater than 70 cores ha—1; and so making an estimation of NO3 leaching by this method is unsatisfactory for pastures. Compared to this, the results of suction cup sampling are more convincing; but even with a tolerated deviation of ± 20 % from the empirically estimated average and with a 95 %‐confidence interval, the calculated mean minimum number of samples in our experiment should be increased to 146 and 265 suction cups ha—1 for the intensively and extensively grazed treatments, respectively. This requirement would be prohibitive for many field experiments.  相似文献   

19.
Radiometric analyses of sorption and degradation of 14C-PCB and 14C-Picloram in different soils Adsorption - desorption isothermes with 14C-PCB (2,3,4-trichlorodiphenyl) and 14C-picloram (4-amino-3,5,6-trichloropyridin-carbonic acid) were determined on 15 different soils. The rates of decomposition were determined on 3 soils. The adsorption of PCB was very intense with K-factors according to Freundlich (soil:solution = 1:20) varying from 16 to 9861. Adsorption increased with increase of organic matter and Fe-content. Picloram showed low adsorption rates, with K-factors varying from 0,01 to 18 (soil:solution = 1:4). The chemical is adsorbed by the organic matter. Decrease of pH increases the adsorption. The correlation of the K-factors with %C, % clay, pH, CEC and %0Feo was computed. The decomposition tests were monitored over a period of 183 days (25°C, 80% water capacity) and yielded decomposition rates of < 0,1% PCB and < 2% picloram. This difference might be due to the structure of the substance. The decomposition of PCB depends most likely on the degree of sorption. No relation between the decomposition of picloram and sorption or soil properties was found.  相似文献   

20.
On the Determination of Capillary Conductivity at Unsteady-State Conditions . Therefore it is stated that for obtaining the effective ku-values. Considering the importance of capillary conductivity for the soil water regime the large differences up to 2 orders of magnitude between determinations on core samples from the same soil using the double-membrane-method (Henseler and Renger 1969) and the evaporation-method (Becher 1971a) initiated a study concerning the error caused by a possible nonlinearity of suction changes between two measuring levels using the latter method. The study was carried out on disturbed and undisturbed core samples from the three textural classes sand, silt and clay and with modified evaporation method. Comparing the geometric means of the obtained ku-values calculated at unsteady-state and quasisteady-state conditions for different suctions resulted in that with usual application of the method the measured ku-values must be diminished for obtaining the effective ku-values. This correction factor increased with suction and is considered to be more important in laboratory than in field use.
  • 1 For sandy soils a correction factor of 2 at 150 cmH2O increasing to 6 at 1000 cm H2O must be applied. The coarser the sand would be, at the lower suction nonlinearity will start and the more rapidly the correction factor will increase;.
  • 2 For silty soils a correction factor of 2–4 must be applied for suctions > 300 cm H2O;.
  • 3 For clayey soils a correction factor of 2 rapidly increasing to 10 must be applied for suctions > 150 cm H2O, but depending on soil cracks.
. The overestimation of water through-put resulting from the uncorrected ku-values amounts to 1.5–4.0 [l/m2 · d] at 100 cm H2O, but these values are within the variation of the effective ku-values. For 800cm H2O the overestimation amounts to 0.002–0.065 [l/m2 · d], but this makes up 300–1000 % of the effective water through-put.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号