首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard.  相似文献   

2.
The purpose of the work was to investigate the effect of the maturation process of the olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga, and Morrut cultivars. The level in the phenolic content of olive drupes declines rapidly during the black maturation phase. A general decreasing trend was observed too in the phenolic content of olive oils during the ripening process in the three varieties studied. Important differences in the high-performance liquid chromatography profile between varieties were observed. These included the presence of very low amounts of lignans in olive oils proceeding from the Morrut cultivar, and the presence of three peaks after elution of 3,4-DHPEA-EDA in the Farga and Morrut cultivars, which could be used as differentiating parameters. Sensory profile differences were observed between olive cultivars and due to the ripening process.  相似文献   

3.
The contents of triacylglycerols and diacylglycerols in three kinds of olive fruit oils (pulp, seed, and whole fruit) were determined. The fatty acid composition and the quality ratios 1,2-diacylglycerols/1,3-diacylglycerols and 1,2-diacylglycerols/total diacylglycerols were also assessed. Seven major Italian olive varieties were considered. Results of univariate statistical analyses indicated that the above analytical parameters (glyceridic ratios excepted) were effective in discriminating between pulp and seed oils. The seed oil fraction did not determine any change in the glyceridic indices and the acylglycerol or fatty acid composition concerning the whole fruit oil (mixture of pulp and seed oil fractions), the weight (%) of seed ( approximately 2%) being by far lower than the weight (%) of pulp ( approximately 85%) (fruit weight basis). Based on the data of triacylglycerol or fatty acid composition, and using appropriate parametric or nonparametric multivariate statistics, the genetic origins (olive variety) of the three fruit oil kinds were characterized.  相似文献   

4.
Fruit ripening is a complex phenomenon that makes berries attractive and also determines their nutritional value. Autumn olive ( Elaeagnus umbellata Thunb.) fruit is a rich source of many human health-related nutrients. The changes in pericarp color are initiated at early developmental stages, coinciding with the fast increase in fruit size. Fruit quality traits with special emphasis on soluble sugars, organic acids, lycopene, and total protein contents were assayed during the fruit ripening. In the fully ripe fruit, glucose and fructose were the principal sugars, malic acid was the most abundant organic acid, and lycopene concentration was extremely high. A proteomic analysis was used to identify up-accumulated proteins induced by the ripening. Among 63 up-accumulated protein spots, 43 were successfully identified by MALDI-TOF/TOF-MS. All 43 proteins were novel for autumn olive, and 8 were first reported in the fruit. Twenty-one proteins of known function were involved in sugar metabolism, citric acid cycle, isoprenoid metabolism, fatty acid synthesis, and protein hydrolysis. The possible roles of these 21 accumulated proteins in autumn olive fruit quality are discussed.  相似文献   

5.
In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.  相似文献   

6.
The initial stability of virgin olive oil depends on various factors, among which are the variety and the degree of fruit ripeness. The former, which genetically determines the composition of the olive and its oil, also marks, to some extent, its stability. However, oil stability changes as the olive ripens, so it is obvious that the degree of ripeness is an important factor. The oils were obtained by the Abencor system. Acidity, peroxide index, UV absorption at 232 and 270 nm, sensory analysis, fatty acid composition, tocopherols, phenolic compounds, orthodiphenolic compounds, sterols, pigments, and oxidative stability were determined, and the results were analyzed statistically. During ripening there was a decrease in all of the parameters studied except linoleic acid, Delta-5-avenasterol, and oil content, which increased. Virgin oils showed very good correlation between stability and the concentrations of total phenols, o-diphenols, tocopherols, chlorophyll pigments and carotenoids, linoleic and linolenic acids, total sterols, beta-sitosterol, and Delta-5-avenasterol.  相似文献   

7.
The effect of O 2 concentration on oil volatile compounds synthesized during the process to obtain virgin olive oil (VOO) was established. The study was carried out either on the whole process or within the main steps (milling and malaxation) of this process with two olive cultivars, Picual and Arbequina, at two ripening stages. Data show that O 2 control during milling has a negative impact on VOO volatile synthesis. This effect seems to depend on cultivar and on the ripening stage in cultivar Picual. Because most VOO volatiles are synthesized during olive fruit crushing at the milling step, O 2 control during malaxation seems to affect just slightly the volatile synthesis. The highest effect was observed when control of O 2 concentration was performed over the whole process. In this case, the content of volatile compounds of oils obtained from both cultivars and ripening stages showed quite similar trends.  相似文献   

8.
Five methods using aqueous/organic solvents for the separation of proteins from oils were compared. The extraction with acetone-hexane followed by amino acid analysis was found to be the most suitable method for isolation and quantification of proteins from oils. The detection limit of the method was 0.18 mg protein/kg oil, and the quantification limit was 0.6 mg protein/kg. The relative repeatability limit for samples containing 1-5 mg protein/kg sample was 27%. The protein recovery ranged between 68 and 133%. Using this method, the protein content of 14 refined and nonrefined oils was determined. In none of the refined oils were proteins detected, whereas the protein content of the unrefined oils ranged between undetectable in extra virgin olive oil to 11 mg/kg in rapeseed oil. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with silver staining, many protein bands were visible in the unrefined soy, olive, peanut, and rapeseed oil samples. Proteins bands were not obtained from the refined fish oil. In the other refined oil samples, a few proteins bands could be visualized. Two protein bands with apparent molecular molecular masses of 58 and 64 kDa were always observed in these oils.  相似文献   

9.
为研究陇南市不同种植地对不同品种油橄榄果实生长的影响,对陇南市武都区种植的莱星、鄂植8号、奇迹、皮削利等4个油橄榄品种,分别在其果实生长的受精和坐果期、种子生长期、果核变硬期、中果皮形成期和果实成熟期比较判断果实表型性状,分析果实生长期间含水率和含油率的变化,以探明不同油橄榄品种的适宜栽培区,为优化陇南地区油橄榄种植资源配置提供支持。结果表明,在陇南市武都区锦屏村和稻畦村种植的不同品种油橄榄果实外观均呈长圆形,且锦屏村种植的莱星油橄榄果实百粒鲜质量和含油率均高于稻畦村,中果皮形成期百粒鲜质量和含油率分别高于稻畦村34.82%和72.53%。稻畦村种植的鄂植8号油橄榄果实百粒鲜质量在果实生长前期低于锦屏村,生长后期则高于锦屏村,中果皮形成期稻畦村油橄榄果实百粒鲜质量高于锦屏村26.00%。锦屏村种植的鄂植8号油橄榄果实含油率均高于稻畦村,果实成熟期含油率高于稻畦村84.48%。锦屏村种植的奇迹油橄榄果实百粒鲜质量和含油率均高于稻畦村,果核变硬期百粒鲜质量高于稻畦村36.00%,果实成熟期的含油率高于稻畦村53.71%。锦屏村种植的皮削利油橄榄果实含油率高于稻畦村,中果皮形成期的含油率高于稻畦村76.13%。由此可知,锦屏村种植的油橄榄莱星、奇迹均优于稻畦村,且果实用途偏向于油用,油橄榄鄂植8号和皮削利作为油果兼用型果实,在锦屏村和稻畦村均可种植。且生长良好。  相似文献   

10.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

11.
Composition of the sterol fraction, fatty acid, acidity, and the sensorial evaluation of virgin olive oils were studied in two eastern Spanish varieties grown and processed under the same conditions. Fruits were stored at 5 degrees C and ambient temperature for different times. During fruit storage, there was no significant variation (P = 0.05) in fatty acid composition. However, the sterol composition of the oil varied markedly (in particular, there was an increase in stigmasterol), acidity increased, and there was a very significant decrease in sensorial quality. The stigmasterol content presented a high correlation with the acidity and sensory evaluation (P < 10(-)(6)). The total sterol content increased gradually with olive storage time. Oils with stigmasterol greater than campesterol are graded to a low level (lampant). It is of interest that sensorial quality is revealed by stigmasterol content, a fact unknown until now.  相似文献   

12.
The aim of this work was to determine the transfer of the chloroplast pigment fractions during the virgin olive oil extraction process, in relation to different factors: the ripening stage of the olive fruits, the irrigation water applied to the olive tree, and the addition of natural microtalc (NMT) during the oil extraction process. Results showed that the percentage of chloroplast pigments transferred from the olive paste to the oil increases with the ripening of the olive fruit (raw material). An excess of the water irrigation applied to the olive tree shows a reduction in the biosynthesis of chloroplast pigments in olive fruits, which is reflected in a low concentration in the virgin oils. Furthermore, the percentage of pigment transfer from the olive paste to the oil during the extraction process is reduced by irrigation, mainly of the chlorophyll fraction. The addition of NMT during the malaxation step produced an increase in the percentage of the total pigments transferred from the olive paste to the oil, in relation to nonaddition.  相似文献   

13.
A series of physical and chemical changes occur as oil palm fruits ripen in the bunch. We evaluated changes in lipid content in the mesocarp and fruits, and the chemical composition of fatty acids (FA), triacylglycerol (TAG), tocols, and carotenes of the lipids extracted from fruits of three commercial tenera cultivars, namely, Deli×La Me?, Deli×Ekona, and Deli×Avros, planted in two different geographical regions in Colombia, during the ripening process 12, 14, 16, 18, 20, 22, and 24 weeks after anthesis (WAA). It was found that 12 WAA the mesocarp contained less than 6% of total lipids. Oil content increased rapidly after 16 WAA, reaching the maximum oil content of 55% in fresh mesocarp and 47% in fresh fruits at 22 WAA, which was found the optimal time for harvesting. Changes in FA and TAG showed that total polyunsaturated fatty acids (PUFA) and triunsaturated triacylglycerols (TUTAG) decreased, while total saturated fatty acids (SFA) and disaturated triacylglycerols (DSTAG) increased, over the ripening period. Changes in FA were mainly observed in palmitic, oleic, linoleic, and linolenic acids, and in POP, POO, POL, and OLL for the TAGs evaluated. Levels of tocols changed depending on whether they were tocopherols or tocotrienols. In the earliest stages tocopherols were predominant but decreased rapidly from 6600 mg kg(-1) of oil at 14 WAA to 93 mg kg(-1) of oil at 22 WAA. Tocotrienols appeared at the same time as oil synthesis started, and became the main source of total tocols, equivalent to 87% in total lipids extracted.  相似文献   

14.
The evolution of 1,3- and 1,2-isomers of diacylglycerols (DGs) in olive oils obtained from healthy olives and the influence of the olive quality was studied. Healthy olive fruits yielded oils containing almost exclusively 1,2-isomers whereas altered olives produced oils with significant amounts of 1,3-isomers. Virgin olive oils obtained from various olive cultivars and stored at different temperatures showed triacylglycerol hydrolysis and diacylglycerol isomerization depending on the acidity and temperature. The results indicated that the relationship between acidity and total diacylglycerol content has scarce utility for detecting mild refined oil in virgin olive oil. On the other hand, the 1,3-/1,2-DG isomers ratio is useful for assessing the genuineness of virgin olive oils with low acidities during the early stages of storage.  相似文献   

15.
It has been reported that various cultivars of fruits and vegetables may present a different pattern for the contained allergens. Here, we report on the different content in allergenic proteins for different peach (Prunus persica) cultivars, sampled during two consecutive harvest seasons. Fruits from six cultivars of peaches were harvested fully ripe, and the proteins extracted from whole or chemically peeled fruits were analyzed by SDS-PAGE and immunoblotting. All the protein extracts from whole fruit contained a 9 kDa protein. This protein proved to be absent in the extracts taken from chemically peeled fruit. In four cultivars, this protein corresponds to the allergen Pru p3, a lipid transfer protein that causes the oral allergy syndrome (OAS) in sensitized people. In the following year, fruits from four of the six cultivars of peaches studied previously were harvested at different times, at one and two weeks before the commercial ripening time and when fully ripe, to ascertain whether the presence of the 9 kDa allergen might be related to the ripening process. Two cultivars out of four produced an intense allergenic band corresponding to a 9 kDa protein already two weeks before the commercial ripening date, while the others showed a progressive increment of the 9 kDa allergen during ripening.  相似文献   

16.
In olive oils, relationships between oxidative stability, glyceridic composition, and antioxidant content were investigated. Lipid matrices, obtained by purification of olive and high-oleic sunflower oils, were spiked with hydroxytyrosol, alpha-tocopherol, and mixtures of them and then subjected to oxidation in a Rancimat apparatus at 100 degrees C. At the same concentration of antioxidants, induction time (IT) decreased as the unsaturation rate of the matrix increased, but only fair correlations were found with fatty acid composition. Oxidative susceptibility (OS(TAG)) was calculated as a function of the relative oxidation rate of the triacylglycerols, and a linear relationship-IT (h) = (a + b)OS(TAG)-between induction time and this parameter showed a good correlation coefficient (r > 0.990, p < 0.001). In the case of matrices with a single antioxidant, origin ordinate (a) and slope (b) can be calculated as a function of the antioxidant concentration. In matrices spiked with mixtures of hydroxytyrosol and alpha-tocopherol, a simple relationship between the coefficients a and b and the concentration of antioxidants cannot be established because additive and subtractive effects occur depending on the relative concentrations of both antioxidants. However, approximate values for these coefficients can be obtained, allowing the estimation of the oil stability. In various olive oils, an acceptable agreement was found between the IT experimentally determined and that calculated from the oil composition. These results confirmed that the Rancimat stability of olive oils mainly depends on triacylglycerol composition and concentrations of o-diphenols and alpha-tocopherol.  相似文献   

17.
Changes in chlorophyll and carotenoid pigments of five olive (Olea europaea L.) varieties destined for milling were investigated at six consecutive ripening stages. There was a manifest dependence between olive variety, moment of picking, and chloroplast pigment composition of the fruits. Although the content of chlorophylls and carotenoids differed with fruit variety, ripening always involved their gradual loss, which becames more pronounced with increased presence of anthocyanin compounds. The relative rates of disappearance of chlorophylls and carotenoids were markedly different between varieties, implying that the catabolism of these pigments takes place at a relative rate inherent to each variety. The varieties less rich in pigments showed the most extreme behavior. The highest relative rate of disappearance was observed in fruits of the Blanqueta variety, and the lowest was observed in those of Arbequina. The chlorophyll a/chlorophyll b ratio remained practically constant during ripening, with a value very similar for Hojiblanca, Picual, Cornicabra, and Blanqueta, but much higher for Arbequina, implying that the structure of the photosynthetic apparatus is different in the latter variety. In the five varieties studied, lutein was the slowest carotenoid to be degraded, so that its percentage in the fruits increased with ripening, whereas beta-carotene was the fastest to disappear. In ripe fruits covered with anthocyanins, chloroplast pigments were retained in both skin and pulp, with the rate of disappearance being much higher in the latter.  相似文献   

18.
The phenolic composition of peel, pulp, and seed of the olive fruit was studied for several Italian cultivars used for oil extraction. The seed contained a compound never previously detected in peel and in pulp. The spectroscopic characterization of this compound proved, for the first time, the presence of nüzhenide in the olive seed. Study of the phenolic composition showed that oleuropein, demethyloleuropein, and verbascoside were present in all of the constitutive parts of the fruit; by contrast, nüzhenide was exclusively present in the seeds of all the cultivars at all ripening stages studied.  相似文献   

19.
Methods devised for oil extraction from avocado (Persea americana Mill.) mesocarp (e.g., Soxhlet) are usually lengthy and require operation at high temperature. Moreover, methods for extracting sugars from avocado tissue (e.g., 80% ethanol, v/v) do not allow for lipids to be easily measured from the same sample. This study describes a new simple method that enabled sequential extraction and subsequent quantification of both fatty acids and sugars from the same avocado mesocarp tissue sample. Freeze-dried mesocarp samples of avocado cv. Hass fruit of different ripening stages were extracted by homogenization with hexane and the oil extracts quantified for fatty acid composition by GC. The resulting filter residues were readily usable for sugar extraction with methanol (62.5%, v/v). For comparison, oil was also extracted using the standard Soxhlet technique and the resulting thimble residue extracted for sugars as before. An additional experiment was carried out whereby filter residues were also extracted using ethanol. Average oil yield using the Soxhlet technique was significantly (P < 0.05) higher than that obtained by homogenization with hexane, although the difference remained very slight, and fatty acid profiles of the oil extracts following both methods were very similar. Oil recovery improved with increasing ripeness of the fruit with minor differences observed in the fatty acid composition during postharvest ripening. After lipid removal, methanolic extraction was superior in recovering sucrose and perseitol as compared to 80% ethanol (v/v), whereas mannoheptulose recovery was not affected by solvent used. The method presented has the benefits of shorter extraction time, lower extraction temperature, and reduced amount of solvent and can be used for sequential extraction of fatty acids and sugars from the same sample.  相似文献   

20.
The aim of this research is to find if there is direct evidence relating the fatty acid composition of olive oils to specific cultivars grown within a well-limited geographical region. To group olive oils according to their own cultivars,(13)C high-field nuclear magnetic resonance (NMR) and gas chromatography (GC) were used to analyze 60 extra virgin olive oils from the same Italian region (southwestern Sicily) obtained from four monovarietal cultivars. The (13)C NMR spectrum provides information about glycerol triesters of olive oils, i.e., about the acyl composition of major components and about the fatty acids' positional distribution on the glycerol moiety. GC gives the complete fatty acid profile of olive oil samples. Selection of NMR and GC peaks on the basis of their sensitivity to the different cultivars was performed by using multivariate analysis of variance (MANOVA). Principal component analysis, tree clustering analysis, multidimensional scaling (MDS), and linear discriminant analysis (LDA) were then performed on the MANOVA-selected peaks. Results obtained from (13)C NMR and GC techniques combined with the multivariate statistical procedure are in good agreement and prove the usefulness of fatty acids analysis to group the monovarietal olive oils belonging to the same cultivars. Grouping of olive oils according to their cultivars occurs for particular (13)C resonances all belonging to fatty chains in the sn 1,3 position of the glycerol moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号