首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo evaluate the postoperative analgesic effects of a constant rate infusion (CRI) of either fentanyl (FENT), lidocaine (LIDO), ketamine (KET), dexmedetomidine (DEX), or the combination lidocaine-ketamine-dexmedetomidine (LKD) in dogs.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty-four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane. Treatments were intravenous (IV) administration of a bolus at start of anesthesia, followed by an IV CRI until the end of anesthesia, then a CRI at a decreased dose for a further 4 hours: CONTROL/BUT (butorphanol 0.4 mg kg−1, infusion rate of saline 0.9% 2 mLkg−1 hour−1); FENT (5 μg kg−1, 10 μg kg−1hour−1, then 2.5 μg kg−1 hour−1); KET (1 mgkg−1, 40 μg kg−1 minute−1, then 10 μg kg−1minute−1); LIDO (2 mg kg−1, 100 μg kg−1 minute−1, then 25 μg kg−1 minute−1); DEX (1 μgkg−1, 3 μg kg−1 hour−1, then 1 μg kg−1 hour−1); or a combination of LKD at the aforementioned doses. Postoperative analgesia was evaluated using the Glasgow composite pain scale, University of Melbourne pain scale, and numerical rating scale. Rescue analgesia was morphine and carprofen. Data were analyzed using Friedman or Kruskal–Wallis test with appropriate post-hoc testing (p < 0.05).ResultsAnimals requiring rescue analgesia included CONTROL/BUT (n = 8), KET (n = 3), DEX (n = 2), and LIDO (n = 2); significantly higher in CONTROL/BUT than other groups. No dogs in LKD and FENT groups received rescue analgesia. CONTROL/BUT pain scores were significantly higher at 1 hour than FENT, DEX and LKD, but not than KET or LIDO. Fentanyl and LKD sedation scores were higher than CONTROL/BUT at 1 hour.Conclusions and clinical relevanceLKD and FENT resulted in adequate postoperative analgesia. LIDO, CONTROL/BUT, KET and DEX may not be effective for treatment of postoperative pain in dogs undergoing ovariohysterectomy.  相似文献   

2.
ObjectiveTo compare the postoperative analgesic effects of intravenous (IV) lidocaine, meloxicam, and their combination in dogs undergoing ovariohysterectomy.Study designProspective, randomized, double‐blind, controlled clinical trial.AnimalsTwenty‐seven dogs aged (mean ± SD) 16.1 ± 7.5 months and weighing 22.4 ± 17.9 kg scheduled for ovariohysterectomy.MethodsAnaesthesia was induced with propofol and maintained with isoflurane. Dogs (n = 9 in each group) were allocated to receive just prior to and during surgery one of the following regimens: M group, 0.2 mg kg?1 IV meloxicam then a continuous rate infusion (CRI) of lactated Ringer's at 10 mL kg?1 hour?1; L group, a bolus of lidocaine (1 mg kg?1 IV) then a CRI of lidocaine at 0.025 mg kg?1 minute?1; and M + L group, both the above meloxicam and lidocaine treatments. Pain and sedation were scored, and venous samples taken for serum cortisol and glucose measurement before and at intervals for 12 hours after anaesthesia. Pain scores were assessed using a multi‐parameter subjective scoring scale (cumulative scale 0–21) by three observers. The protocol stated that dogs with a total score exceeding 9 or a sub‐score above 3 in any one category would receive rescue analgesia. Sedation was scored on a scale of 0–4.ResultsThere were no significant differences in subjective pain scores, serum cortisol, and glucose concentrations between the three groups. The highest pain score at any time was 5, and no dog required rescue analgesia. None of the three regimens caused any observable side effects during or after anaesthesia. At 1 and 2 hours after extubation dogs in group L were significantly more sedated than in the other two groups.Conclusions and Clinical relevanceThis study suggests that, with the scoring system used, IV lidocaine and meloxicam provide similar and adequate post‐operative analgesia in healthy dogs undergoing ovariohysterectomy.  相似文献   

3.
OBJECTIVE: To determine the influence of a low-dose constant rate infusion (LCRI; 50 microg kg(-1) minute(-1)) and high-dose CRI (HCRI; 200 microg kg(-1) minute(-1)) lidocaine infusion on the minimum alveolar concentration (MAC) of isoflurane (I) in dogs. STUDY DESIGN: Prospective experimental study. ANIMALS: Ten mongrel dogs (four females, six males), weighing 20-26.3 kg. METHODS: Dogs were anesthetized with I in oxygen and their lungs mechanically ventilated. Baseline MAC was determined using mechanical or electrical stimuli. Lidocaine (2 mg kg(-1) IV) was administered over 3 minutes, followed by the LCRI and MAC determination commenced 30 minutes later. Once MAC was determined following LCRI, the lidocaine infusion was stopped for 30 minutes. A second bolus of lidocaine (2 mg kg(-1), IV) was administered, followed by the HCRI and MAC re-determined. Concentrations of lidocaine and its metabolites were measured at end-tidal I concentrations immediately above and below MAC. Heart rates and blood pressures were measured. RESULTS: Minimum alveolar concentration of I was 1.34 +/- 0.11 (%; mean +/- SD) for both types of stimulus. The LCRI significantly reduced MAC to 1.09 +/- 0.13 (18.7% reduction) and HCRI to 0.76 +/- 0.10 (43.3% reduction). Plasma concentrations (ng mL(-1), median; value below and above MAC, respectively) for LCRI were: lidocaine, 1465 and 1537; glycinexylidide (GX), 111 and 181; monoethylglycinexylidide (MEGX), 180 and 471 and for HCRI were: lidocaine, 4350 and 4691; GX, 784 and 862; MEGX, 714 and 710. Blood pressure was significantly increased at 30 minutes after high dose infusion. CONCLUSION AND CLINICAL RELEVANCE: Lidocaine infusions reduced the MAC of I in a dose-dependent manner and did not induce clinically significant changes on heart rate or blood pressure.  相似文献   

4.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

5.
Objective To determine if systemic administration of lidocaine during intraocular surgery reduces post-operative ocular pain. Study design Randomized, masked, controlled experimental trial. Animals Twelve dogs weighing 15.5 ± 1.7 kg (mean ± SD) and aged 2.5 ± 0.6 years. Methods All dogs underwent a baseline ophthalmic examination and subjective pain score. Anesthesia consisted of acepromazine (0.1 mg kg−1, IM), propofol (4–6 mg kg−1, IV), and isoflurane in oxygen. There were three groups each receiving a bolus followed by an infusion (n = 4): saline (0.3 mL kg−1 IV + 0.2 mL kg−1hour−1 IV); morphine (0.15 mg kg−1 IV + 0.1 mg kg−1hour−1 IV); and lidocaine (1.0 mg kg−1 IV + 0.025 mg kg−1minute−1 IV). All treatments began 15 minutes prior to starting of phacoemulsification and lens removal from the right eye. Pain scores were recorded at 0.5, 1, 2, 3, 4, 6, 8, 16, and 24 hours after t = 0 (extubation). Rescue morphine was administered (1.0 mg kg−1 IM) if the subjective pain score ≥9 (maximum = 24), and the dog was excluded from further data analysis. Differences in pain scores and time-to-treatment failure (TTF) were analyzed using the Wilcoxon's rank sum test. Differences in incidence of treatment failure were analyzed using Fisher's exact test. Physiologic data were analyzed using repeated measures anova . Significance was defined as P < 0.05. Results Incidence of treatment failure was 100% in saline-treated dogs and 50% in morphine- or lidocaine-treated dogs. There was no difference in intraocular pressure, aqueous flare, cell count (or protein) between groups in the operated eye at any time following extubation. Conclusion and clinical relevance This pilot study suggests that intraoperative lidocaine may provide analgesic benefits similar to morphine for intraocular surgery in dogs, but more definitive research is needed. This model appears to be appropriate for pain assessment studies as the negative control group demonstrated 100% failure rate.  相似文献   

6.
Objective  To investigate the effects of a low-dose constant rate infusion (LCRI; 50 μg kg−1 minute−1) and high-dose CRI (HCRI; 200 μg kg−1 minute−1) lidocaine on arterial blood pressure and on the minimum alveolar concentration (MAC) of sevoflurane (Sevo), in dogs.
Study design  Prospective, randomized experimental design.
Animals  Eight healthy adult spayed female dogs, weighing 16.0 ± 2.1 kg.
Methods  Each dog was anesthetized with sevoflurane in oxygen and mechanically ventilated, on three separate occasions 7 days apart. Following a 40-minute equilibration period, a 0.1-mL kg−1 saline loading dose or lidocaine (2 mg kg−1 intravenously) was administered over 3 minutes, followed by saline CRI or lidocaine LCRI or HCRI. The sevoflurane MAC was determined using a tail clamp. Heart rate (HR), blood pressure and plasma concentration of lidocaine were measured. All values are expressed as mean ± SD.
Results  The MAC of Sevo was 2.30 ± 0.19%. The LCRI reduced MAC by 15% to 1.95 ± 0.23% and HCRI by 37% to 1.45 ± 0.21%. Diastolic and mean pressure increased with HCRI. Lidocaine plasma concentration was 0.84 ± 0.18 for LCRI and 1.89 ± 0.37 μg mL−1 for HCRI. Seventy-five percent of HCRI dogs vomited during recovery.
Conclusion and clinical relevance  Lidocaine infusions dose dependently decreased the MAC of Sevo, did not induce clinically significant changes in HR or arterial blood pressure, but vomiting was common during recovery in HCRI.  相似文献   

7.
Cardiopulmonary and sedative effects of intravenous or epidural methadone were compared. Six beagles were randomly assigned to group MIV (methadone 0.5 mg/kg IV + NaCl 0.9% epidurally) or MEP (methadone 0.5 mg/kg epidurally + NaCl 0.9% IV). Cardiopulmonary, blood gas and sedation were assessed at time (T) 0, 15, 30, 60, 120, 240 and 480 min after drug administration. Compared to T0, heart rate decreased at T15–T120 in MIV (< .001) and T15–T240 in MEP (< .05); mean arterial pressure was reduced at T15–T60 in MEP (< .01); respiratory rate was higher at T15 and T30 in both groups (< .05); pH was lower at T15–T120 in MIV (< .01) and T15, T30 and T120 in MEP (< .05); PaCO2 was higher at T15–T60 in MIV (< .01) and T15, T30 and T120 in MEP (< .01); sedation scores were higher at T15 and T30 in MIV and T15–T60 in MEP (< .05). At T120 and T240, sedation score was higher in group MEP compared with group MIV (< .01) In conclusion, cardiopulmonary and sedative effects of identical methadone doses are similar when administered IV or epidurally to conscious healthy dogs.  相似文献   

8.
ObjectiveTo compare, versus a control, the sensory, sympathetic and motor blockade of lidocaine 1% and 2% administered epidurally in bitches undergoing ovariohysterectomy.Study designRandomized, blinded, controlled clinical trial.AnimalsA total of 24 mixed-breed intact female dogs.MethodsAll dogs were administered dexmedetomidine, tramadol and meloxicam prior to general anesthesia with midazolam–propofol and isoflurane. Animals were randomly assigned for an epidural injection of lidocaine 1% (0.4 mL kg−1; group L1), lidocaine 2% (0.4 mL kg−1; group L2) or no injection (group CONTROL). Heart rate (HR), respiratory rate (fR), end-tidal partial pressure of carbon dioxide (Pe′CO2), and invasive systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded every 5 minutes. Increases in physiological variables were treated with fentanyl (3 μg kg−1) intravenously (IV). Phenylephrine (1 μg kg−1) was administered IV when MAP was <60 mmHg. Postoperative pain [Glasgow Composite Pain Score – Short Form (GCPS–SF)] and return of normal ambulation were recorded at 1, 2, 3, 4 and 6 hours after extubation.ResultsThere were no differences over time or among groups for HR, fR, Pe′CO2 and SAP. MAP and DAP were lower in epidural groups than in CONTROL (p = 0.0146 and 0.0047, respectively). There was no difference in the use of phenylephrine boluses. More fentanyl was administered in CONTROL than in L1 and L2 (p = 0.011). GCPS–SF was lower for L2 than for CONTROL, and lower in L1 than in both other groups (p = 0.001). Time to ambulation was 2 (1–2) hours in L1 and 3 (2–4) hours in L2 (p = 0.004).Conclusions and clinical relevanceEpidural administration of lidocaine (0.4 mL kg−1) reduced fentanyl requirements and lowered MAP and DAP. Time to ambulation decreased and postoperative pain scores were improved by use of 1% lidocaine compared with 2% lidocaine.  相似文献   

9.
ObjectiveTo assess cardiopulmonary function in sedated and anesthetized dogs administered intravenous (IV) dexmedetomidine and subsequently administered IV lidocaine to treat dexmedetomidine-induced bradycardia.Study designProspective, randomized, crossover experimental trial.AnimalsA total of six purpose-bred female Beagle dogs, weighing 9.1 ± 0.6 kg (mean ± standard deviation).MethodsDogs were randomly assigned to one of three treatments: dexmedetomidine (10 μg kg–1 IV) administered to conscious (treatments SED1 and SED2) or isoflurane-anesthetized dogs (end-tidal isoflurane concentration 1.19 ± 0.04%; treatment ISO). After 30 minutes, a lidocaine bolus (2 mg kg–1) IV was administered in treatments SED1 and ISO, followed 20 minutes later by a second bolus (2 mg kg–1) and a 30 minute lidocaine constant rate infusion (L-CRI) at 50 (SED1) or 100 μg kg–1 minute–1 (ISO). In SED2, lidocaine bolus and L-CRI (50 μg kg–1 minute–1) were administered 5 minutes after dexmedetomidine. Cardiopulmonary measurements were obtained after dexmedetomidine, after lidocaine bolus, during L-CRI and 30 minutes after discontinuing L-CRI. A mixed linear model was used for comparisons within treatments (p < 0.05).ResultsWhen administered after a bolus of dexmedetomidine, lidocaine bolus and L-CRI significantly increased heart rate and cardiac index, decreased mean blood pressure, systemic vascular resistance index and oxygen extraction ratio, and did not affect stroke volume index in all treatments.Conclusion and clinical relevanceLidocaine was an effective treatment for dexmedetomidine-induced bradycardia in healthy research dogs.  相似文献   

10.
OBJECTIVE: To determine the plasma concentration and define the pharmacokinetic characteristics of fentanyl (10 microg kg(-1)) administered as a single intravenous (IV) injection followed by: (a) no further drug; or (b) a constant rate infusion (CRI) of fentanyl 10 microg kg(-1) hour(-1) lasting 1, 3 or 4 hours in dogs. Animals Fourteen healthy adult beagles (seven males and seven females). EXPERIMENTAL DESIGN: Randomized cross-over design. MATERIALS AND METHODS: Dogs were randomly assigned to four treatment groups. Drugs were administered to each dog in a randomized cross-over design with at least a 14-day washout interval between experiments. All dogs received an IV loading dose of fentanyl (10 microg kg(-1)). One group received no further fentanyl. In others, the loading dose was followed by a CRI of fentanyl (10 microg kg(-1) hour(-1)) for 1, 3 or 4 hours. Blood samples were collected and plasma fentanyl concentrations determined using high-performance liquid chromatography-mass spectrometry. Plasma pharmacokinetic estimates were obtained by plotting plasma concentrations versus time data and by fitting the change in concentration to a pharmacokinetic model, using a purpose-built program written by the Graduate School of Pharmaceutical Sciences (Kyoto University) in Visual Basic (VBA) on Excel (Microsoft Corporation). RESULTS: Plasma fentanyl concentration decreased rapidly after single IV injection: the plasma concentration-time curve best fitted a two-compartment model. Pharmacokinetic variables for IV injection were characterized by a short distribution half-time (t1/2alpha was 4.5 minutes), a relatively long elimination half time (t1/2beta was 45.7 minutes), a large volume of distribution (approximately 5 L kg(-1)) and high total body clearance (77.9 mL minute(-1) kg(-1)). Stable plasma fentanyl levels were obtained in all CRI groups although pharmacokinetic variables were influenced by the duration of administration. CONCLUSIONS AND CLINICAL RELEVANCE: While this study clarified the pharmacokinetic features of rapid IV fentanyl injection and CRI in dogs, the plasma concentration achieving analgesia was not and so further research is needed. Further studies on the effects of other sedatives and/or anaesthetics on fentanyl's disposition are also required as the drug is commonly used with other agents.  相似文献   

11.
ObjectiveTo evaluate the perioperative opioid-sparing effect of a medetomidine (MED) infusion compared to a saline (SAL) infusion in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery.Study designRandomized, partially blinded, clinical study.AnimalsA total of 44 client-owned adult dogs.MethodsAll dogs were administered a 1 μg kg–1 MED loading dose, followed by a 1.7 μg kg–1 hour–1 constant rate infusion (CRI) intravenously or equivalent volumes of SAL. Infusions were started 10–15 minutes before surgical incision and continued throughout the surgical procedure. All dogs were administered a standardized anaesthetic and analgesic protocol (including a ketamine CRI). Multiparametric monitoring, including invasive arterial blood pressure, was performed. A trained investigator, unaware of the treatment, performed pain scores for 4 hours postoperatively. Rescue analgesia consisted of fentanyl administered intraoperatively and methadone postoperatively. Data were tested for normality and analysed with Fisher’s exact test, Mann–Whitney U-test, analysis of variance and Kaplan–Meier survival analysis. Data are shown as median (interquartile range) and p-value was set at < 0.05.ResultsThe total dose of fentanyl was significantly lower with MED 0 (0–0.8) μg kg–1 hour–1 compared to SAL 3 (1.8–5.3) μg kg–1 hour–1 (p = 0.004). In the MED group, one dog compared to 12 dogs in the SAL group required a fentanyl CRI (p = 0.001). There were no statistically significant differences between groups regarding the total dose of methadone administered.Conclusions and clinical relevanceThe addition of a low-dose medetomidine CRI to the anaesthetic protocol decreased the need for a fentanyl CRI in otherwise healthy dogs undergoing thoraco-lumbar hemilaminectomy surgery during administration of a ketamine CRI.  相似文献   

12.
ObjectiveTo evaluate the volume effect of local anesthetic solution on thoracic epidural analgesia in dogs.Study designProspective, experimental trial.AnimalsFive healthy adult Beagle dogs weighing 9.7 ± 1.3 kg.MethodsA catheter was inserted into the seventh thoracic epidural space using a lumbosacral approach, and secured with suture under total intravenous (IV) anesthesia with propofol. Each dog was administered four volume treatments (0.05, 0.10, 0.15 and 0.20 mL kg−1) of 2% lidocaine via the catheter at 12 hour intervals. In every treatment, dogs were re-anesthetized with propofol (6 mg kg−1, IV) and isoflurane, and received iohexol at each volume to visualize the epidural distribution (ED) through computed tomography. Three hours after epidurography, when dogs had recovered from anesthesia, the appropriate volume of lidocaine was injected through the catheter, and sensory blockade (SB) in dermatomes was evaluated by pinching with a mosquito forceps. Results were presented as median (range), and the volume effect on ED and SB was analyzed with one-way Kruskal–Wallis anova.ResultsIn proportion to volumes (0.05, 0.10, 0.15 and 0.20 mL kg−1), there were significant increases in the extent of ED from 7.4 (5.5–9.0) to 10.4 (8.0–12.0), 13.2 (12.5–13.0), and 15.2 (13.0–18.0) vertebrae, respectively, p < 0.001, and in SB from 2.7 (1.0–5.0) to 6.8 (4.5–10.5), 9.9 (6.5–13.0), and 13.1 (11.0–15.0) dermatomes, respectively, p < 0.001. Unilateral ED and SB were observed in all treatments with various grades, and this distribution was more frequent in the low volume treatments. In the high volume treatments, temporary complications including Horner's syndrome, ataxia, paraplegia, depression, stupor, and intermittent cough occurred often.Conclusions and clinical relevanceThe increase in volume of local anesthetic solution improved SB by resulting in more consistent bilateral dermatome blockade as well as an extended blockade. However, caution should be exerted, as higher volume injections of lidocaine caused side effects in all dogs.  相似文献   

13.
OBJECTIVE: To compare the constant rate infusion (CRI) of vecuronium required to maintain a level of neuromuscular blockade adequate for major surgeries, e.g. thoracotomy or laparotomy, in dogs anaesthetized with a CRI of fentanyl and either propofol, isoflurane or sevoflurane. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Thirteen male beagles (age, 9-22 months; body mass 6.3-11.3 kg). MATERIALS AND METHODS: Dogs were anaesthetized with propofol (24 mg kg(-1) hour(-1) IV CRI; group P), isoflurane (1.3% end-tidal concentration; group I) or sevoflurane (2.3% end-tidal concentration; group S) with fentanyl (5 microg kg(-1) hour(-1) IV, CRI). Sixty to seventy minutes after induction of anaesthesia, vecuronium was administered at a rate of 0.4, 0.3 and 0.2 mg kg(-1) hour(-1) in groups P, I and S respectively. To determine the degree of neuromuscular block, a peripheral nerve was stimulated electrically using the train-of-four (TO4) stimulus pattern. Evoked muscle contractions were evaluated using a neuromuscular monitoring device. Once the TO4 ratio reached 0, the continuous infusion rate was decreased and adjusted to maintain a TO4 count of 1. Continuous infusion was continued for 2 hours. The infusion rate of vecuronium was recorded 20, 40, 60, 80, 100 and 120 minutes after the start of infusion. RESULTS: The mean continuous infusion rates of vecuronium during stable infusion were 0.22 +/- 0.04 (mean +/- SD), 0.10 +/- 0.02 and 0.09 +/- 0.02 mg kg(-1) hour(-1) in groups P, I and S respectively. There were statistically significant differences between the rates in groups P and I and between the rates in groups P and S. Conclusions and clinical relevance In healthy dogs, the recommended maintenance infusion rate of vecuronium is 0.2 mg kg(-1) hour(-1) under CRI propofol-fentanyl anaesthesia and 0.1 mg kg(-1) hour(-1) during CRI fentanyl-isoflurane or sevoflurane anaesthesia.  相似文献   

14.
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI.  相似文献   

15.
ObjectiveTo compare postoperative analgesia provided by a constant rate infusion (CRI) of dexmedetomidine (DMED) to that of a well-established positive control [morphine (MOR)] in critically ill dogs. The sedative, cardiorespiratory effects and clinical safety of a 24-hour DMED CRI were also evaluated.Study designProspective, randomised, blinded, positive-controlled parallel-group clinical study.AnimalsForty hospitalised, client-owned dogs requiring post-operative pain management after invasive surgery.MethodsAfter surgery, a loading dose of either DMED (25 μg m?2) or MOR (2500 μg m?2) followed by a 24-hour CRI of DMED (25 μg m?2 hour?1) or MOR (2500 μg m?2 hour?1) was administered. Pain was measured using the Short Form of the Glasgow Composite Measure Pain Scale, sedation and physiological variables were scored at regular intervals. Animals considered to be painful received rescue analgesia and were allocated to a post-rescue protocol; animals which were unresponsive to rescue analgesia were removed from the study. Data were analysed with anova, two-sample t-tests or Chi-square tests. Time to intervention was analysed with Kaplan–Meier methodology.ResultsForty dogs were enrolled. Twenty dogs (9 DMED and 11 MOR) did not require rescue analgesia. Eleven DMED and eight MOR dogs were allocated to the post-rescue protocol and seven of these removed from the study. Significant differences in pain scores between groups were not observed during the first 12 hours, however, DMED dogs were less (p = 0.009) painful during the last 12 hours. Sedation score over the entire 24-hour study was not significantly different between groups.Conclusion / Clinical RelevanceDexmedetomidine CRI was equally effective as MOR CRI at providing postoperative analgesia and no clinically significant adverse reactions were noted. This study shows the potential of DMED to contribute to a balanced postoperative analgesia regimen in dogs.  相似文献   

16.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

17.
OBJECTIVE: To evaluate cardiovascular and respiratory effects and pharmacokinetics of a 24-hour intravenous constant rate infusion (CRI) of dexmedetomidine (DMED) during and after propofol (PRO) or isoflurane (ISO) anaesthesia in dogs. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Ten healthy adult Beagles. METHODS: Instrumented dogs received a DMED-loading bolus (25 microg m(-2)) at time 0 followed by a 24-hour CRI (25 microg m(-2) hour(-1)), with PRO or ISO induction/maintenance of anaesthesia during the first 2 hours (PRO and ISO treatment groups, respectively). Cardiovascular, respiratory, blood gas, airway gas, serum chemistry variables and DMED plasma concentration data were collected at -15, 5, 15, 30, 45, 60, 90 and 120 minutes. A number of cardiorespiratory and tissue oxygenation variables were calculated from the above data. After the 2-hours of anaesthesia, heart and respiratory rates and electrocardiograms were recorded and DMED plasma concentrations were determined for up to 26 hours. RESULTS: Vasopressor effects and the decrease in heart rate (HR) and cardiac index induced by DMED were greater for PRO than ISO, but were within clinically acceptable ranges. Adequate oxygenation was maintained above the critical O(2) delivery level. The overall incidence of unfavourable arrhythmias was low and tended to vary inversely with HR. Mean DMED plasma concentration ranged from 0.23 to 0.47 ng mL(-1) for both groups during the 24-hour CRI with a mean elimination half-life of approximately 0.46 hour. CONCLUSION AND/CLINICAL RELEVANCE: DMED CRI resulted in typical alpha(2)-agonist induced haemodynamic changes with minimal respiratory effects, and appeared to be an efficacious adjunct during and after PRO or ISO anaesthesia in healthy dogs.  相似文献   

18.
19.
This study examined the pharmacokinetics and physiologic effects of two infusions rates of morphine in conscious dogs. Five adult dogs were randomly studied at weekly intervals. An initial dose of either 0.3 or 0.6 mg/kg were each followed by infusions of 0.17 and 0.34 mg/kg/h. Plasma morphine concentrations, physiological parameters, sedation and mechanical antinociception were evaluated during each infusion. Morphine was assayed by high pressure liquid chromatography (HPLC) with electrochemical coulometric detection and pharmacokinetic parameters were calculated. Data were fitted to a bi-compartment model with a rapid distribution (<1 min for both doses) and slower termination rate. For the high and low doses, respectively, mean+/-SD terminal half-life was 38+/-5 and 27+/-14 min, apparent volumes of distribution at steady-state were 1.9+/-0.5 and 1.3+/-0.8 L/kg, with clearances of 50+/-15 and 67+/-20 mL/kg/min. Steady-state plasma concentrations ranged from 93 to 180 ng/mL and 45 to 80 ng/mL in the high and low doses, respectively. Respiratory rate increased significantly, pulse oximetry remained>95% and body temperature decreased significantly during both infusions. No vomition or neuroexcitation occurred. Sedation and mechanical antinociception were both mild during the lower infusion rate, and mild to moderate during the higher infusion rate. In conclusion, morphine pharmacokinetics was not altered by increasing infusion rates, producing stable, long-lasting plasma concentrations.  相似文献   

20.
OBJECTIVE: To record the electroencephalographic changes during castration in ponies anaesthetized with halothane and given intravenous (IV) lidocaine by infusion. The hypothesis tested was that in ponies, IV lidocaine is antinociceptive and would therefore obtund EEG changes during castration. ANIMALS: Ten Welsh mountain ponies referred to the Department of Clinical Veterinary Medicine, Cambridge for castration under general anaesthesia. MATERIALS AND METHODS: Following pre-anaesthetic medication with intramuscular acepromazine (0.02 mg kg(-1)) anaesthesia was induced with IV guaiphenesin (60 mg kg(-1)) and thiopental (9 mg kg(-1)) and maintained with halothane at an end-tidal concentration (FE'HAL) of 1.2%. A constant rate infusion of IV lidocaine (100 microg kg(-1) minute(-1)) was administered throughout anaesthesia. The electroencephalogram (EEG) was recorded continuously using subcutaneous needle electrodes. All animals were castrated using a closed technique. The raw EEG signal was analysed after completion of each investigation, and the mean values of EEG variables (median frequency, spectral edge frequency, total amplitude) recorded during a baseline period (before surgery began) and the removal of each testicle were compared using anova for repeated measures. RESULTS: Spectral edge frequency (SEF) 95% decreased during removal of the second testicle compared with baseline recordings. No other significant EEG changes during castration were measured. CONCLUSIONS: Lidocaine obtunded the EEG changes identified during castration in a previous control study, providing indirect evidence that lidocaine administered peri-operatively was antinociceptive and contributed to anaesthesia during castration. CLINICAL RELEVANCE: The antinociceptive effect of lidocaine combined with its minimal cardiovascular effects indicate a potential use for systemic lidocaine in clinical anaesthetic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号