首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Gliadins and glutenins were extracted from commercial wheat gluten on the basis of their extractability in ethanol and used to produce film-forming solutions. Films cast using these gliadin- and glutenin-rich solutions were characterized. Glycerol was used as a plasticizer, and its effect on the films was also studied. Films obtained from the glutenin fraction presented higher tensile strength values and lower elongation at break and water vapor permeability values than gliadin films. Gliadin films disintegrated when immersed in water. The GAB isotherm model was used to describe the equilibrium moisture sorption of the films. The glycerol concentration largely modified mechanical and water vapor barrier properties of both film types.  相似文献   

2.
The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were separated from the intact protein and identified with liquid chromatography-mass spectrometry. Increasing both temperature and ionic strength increased the amounts of both intact protein and peptides in the aggregates. There was an optimal amount of added intact WPI that could aggregate with peptides, yielding a maximal amount of aggregated material in which the peptide/protein molar ratio was around 6. Under all conditions applied, the same peptides were observed in the protein-peptide aggregates formed. The dominant peptides were beta-lg AB [f1-45], beta-lg AB [f90-108], and alpha-la [f50-113]. It was hypothesized that peptides could form a kind of glue network that can include beta-lactoglobulin via hydrophobic interactions at the hydrophobic binding sites at the surface of the protein.  相似文献   

3.
The effects of whey protein hydrolysis on film oxygen permeability (OP) and mechanical properties at several glycerol-plasticizer levels were studied. Both 5.5% and 10% degree of hydrolysis (DH) whey protein isolate (WPI) had significant effect (p 0.05) occurred for film OP between unhydrolyzed WPI, 5.5% DH WPI, and 10% DH WPI films at the same glycerol content. Hydrolyzed WPI films of mechanical properties similar to those of WPI films had better oxygen barrier. Therefore, use of hydrolyzed WPI allowed achievement of desired film flexibility with less glycerol and with smaller increase in OP.  相似文献   

4.
This study focuses on the effect exerted by interchain disulfide bonds on the functional properties of films made from gliadins when cross-linked with cysteine. Gliadins were extracted from commercial wheat gluten with 70% aqueous ethanol, and cysteine was added to the film-forming solution to promote cross-linking between protein chains. The formation of interchain disulfide bonds was assessed by SDS-PAGE analysis. Gliadin films treated with cysteine maintain their integrity in water and become less extensible while their tensile strength increases as a consequence of the development of a more rigid network. The glass transition temperature of cross-linked films shifts to slightly higher values. The plasticizing effects of glycerol and moisture are also demonstrated. The mechanical behavior of cysteine-cross-linked gliadin films was compared to that of polymeric glutenins. Cross-linked gliadins displayed tensile strength values similar to those of glutenin films but achieved slightly lower elongation values. Cysteine-cross-linked gliadin films present the advantage that they are ethanol soluble, facilitating film fabrication or their application as a coating for food or for any other film or surface.  相似文献   

5.
The kinetics of sucrose crystallization in whey protein isolate (WPI) films was studied at 25 degrees C in four different relative humidity environments: 23, 33, 44, and 53%. The effects of protein matrix, crystallization inhibitors, and storage environment on the rate constants of sucrose crystallization were determined using the Avrami model of crystallization. It was found that a cross-linked, denatured whey protein (WP) matrix more effectively hindered sucrose crystallization than a protein matrix of native WP. The crystallization inhibitors tested were lactose, raffinose, modified starch (Purity 69), and polyvinylpyrrolidone (Plasdone C15). Raffinose and modified starch were determined to be the more effective inhibitors of sucrose crystallization. At lower relative humidities (23, 33, and 44%), the cross-linked protein matrix played a more important role in sucrose crystallization than the inhibitors. As relative humidity increased (53%), the crystallization inhibitors were more central to controlling sucrose crystallization in WPI films.  相似文献   

6.
The aim of this work was to study the cleaning of inorganic membranes fouled with whey protein solutions using the enzymatic formulation Alcalase (Novo Nordisk A/S). Hydraulic and chemical methods were considered to characterize the cleanliness of the membranes. Cleaning efficiency was observed to be a function of the operating conditions. The operating conditions tested were the following: recycling versus non-recycling of permeate, pH of the cleaning solution, addition of alkali to regulate the pH, enzymatic agent concentration, and cleaning time. The best conditions to perform the cleaning were related to the best conditions to hydrolyze whey proteins in a discontinuous reactor using the same enzyme preparations. Very high cleaning efficiencies (>90%) were achieved in short operating times (20 min). However, residual matter was observed on the membrane surface.  相似文献   

7.
Complexation of whey proteins with carrageenan   总被引:1,自引:0,他引:1  
The formation of electrostatic complexes of whey protein (WP) and a nongelling carrageenan (CG) was investigated as a function of pH, ionic strength, temperature, and protein-to-polysaccharide (Pr:Ps) ratio. On lowering the pH, the formation of soluble WP/CG complexes was initiated at pH(c) and insoluble complexes at pH(phi), below which precipitation occurred. The values of the transition pH varied as a function of the ionic strength. It was shown that at [NaCl] = 45 mM, the value of pH(phi) was the highest, showing that the presence of monovalent ions was favorable to the formation of complexes by screening the residual negative charges of the CG. When CaCl(2) was added to the mixtures, complexes of WP/CG were formed up to pH 8 via calcium bridging. The electrostatic nature of the primary interaction was confirmed from the slight effect of temperature on the pH(phi). Increasing the Pr:Ps ratio led to an increase of the pH(phi) until a ratio of 30:1 (w/w), at which saturation of the CG chain seemed to be reached. The behavior of WP/CG complexes was investigated at a low Pr:Ps ratio, when the biopolymers were mixed directly at low pH. It resulted in an increase of the pH of the mixture, as compared to the initial pH of the separate WP and CG solutions. The pH increase was accompanied by a decrease in conductivity. The trapping of protons inside the complex probably resulted from a residual negative charge on the CG. If NaCl was present in the mixture, the complex took up the Na(+) ions instead of the H(+) ions.  相似文献   

8.
Whey protein isolate (WPI) was chemically modified by vanillic acid in order to enhance its cross-linkability by laccase enzyme. Incorporation of methoxyphenol groups created reactive sites for laccase on the surface of the protein and improved the efficiency of cross-linking. The vanillic acid modified WPI (Van-WPI) was characterized using MALDI-TOF mass spectrometry, and the laccase-catalyzed cross-linking of Van-WPI was studied. Furthermore, the vanillic acid modification was compared with the conventional approach to improve laccase-catalyzed cross-linking by adding free phenolic compounds. A small extent of the vanillic acid modification significantly improved the cross-linkability of the protein and made it possible to avoid color formation in a system that is free of small phenolic compounds. Moreover, the potential application of Van-WPI as emulsifier and the effect of cross-linking on the stability of Van-WPI emulsion were investigated. The post-emulsification cross-linking by laccase was proven to enhance the storage stability of Van-WPI emulsion.  相似文献   

9.
Heat treatment of milk induces a reaction between the milk proteins and lactose, resulting in lactosylated protein species. The lactosylation of the two major whey proteins alpha-lactalbumin and beta-lactoglobulin was investigated by reversed phase liquid chromatography-mass spectrometry (LC-MS). Three sample series, consisting of aqueous model solutions of each whey protein separately and in mixture and whole milk, were heated for different time periods, and the progression of the lactosylation reaction was monitored. The observed degrees of lactosylation and the reaction kinetics showed that the lactosylation of beta-lactoglobulin was not influenced by the presence of other components, whereas the lactosylation of alpha-lactalbumin was enhanced in whole milk compared to the aqueous model systems. An in-depth evaluation of the LC-MS data yielded information regarding changes of physicochemical properties of the whey proteins upon lactosylation. Whereas retention time shifts indicated changes in hydrophobicity for both alpha-lactalbumin and beta-lactoglobulin, changes in the charge state distribution denoting conformational alterations were observed only for beta-lactoglobulin. The analysis of different liquid and solid milk products showed that the lactosylation patterns of the whey proteins can be used as indicators for the extent of heat treatment.  相似文献   

10.
11.
The effects of TGase in dough after 15, 30, 45, and 60 min of resting time after mixing were studied with a Kieffer test. The resistance to stretching of control dough did not change greatly during the 60 min time period after mixing. In dough, TGase decreased extensibility and increased resistance to stretching and this change was already observed after the first 15 min (first measurement). The higher the enzyme dosage was, the higher the magnitude of the rheological change was. All of the doughs that contained TGase 3.8 or 5.7 nkat/g flour had a higher resistance to stretching and lower extensibility than control dough 15 min after mixing. Resistance to stretching clearly increased at a dosage of 5.7 nkat/g flour during the 15-60 min period after mixing. Extensibility increased in the control dough and in the doughs with a low enzyme dosage almost at the same rate. The evolution of air bubbles during proofing was determined with bright field microscopy and image analysis. In the presence of 5.7 nkat/g TGase, the fermented dough contained more of the smallest and less large air bubbles in comparison to the control dough. The effect of TGase and water content on the specific volume of the conventional and organic wheat bread was studied. Water did not have a significant effect on the specific volume of bread. TGase increased the specific volume of breads baked from organic flour only, when additional water (+10% of farinogram absorption) and a small enzyme dosage were used. Microstructural characterization showed that bread baked without TGase from conventional flour had a stronger protein network than that baked from organic flour. TGase improved the formation of protein network in breads baked from either normal or organic flour but at higher dosage caused uneven distribution.  相似文献   

12.
The physical aggregation of commercial whey protein isolate (WPI) and purified beta-lactoglobulin was studied by ultrasound spectroscopy. Protein samples were dialyzed to achieve constant ionic strength backgrounds of 0.01 and 0.1 NaCl, and gelation was induced in situ at constant temperatures (from 50 to 75 degrees C) or with a temperature ramp from 20 to 85 degrees C. Changes in the ultrasonic properties were shown in the early stages of heating, at temperatures below those reported for protein denaturation. During heating, the relative ultrasound velocity (defined as the difference between sample velocity and reference velocity) decreased continuously with temperature, indicating a rearrangement of the hydration layer of the protein and an increase in compressibility of the protein shell. At temperatures <50 degrees C the ultrasonic attenuation decreased, and <65 degrees C both velocity and attenuation differentials showed increasing values. A sharp decrease in the relative velocity and an increase in the attenuation at 70 degrees C were indications of "classical" protein denaturation and the formation of a gel network. Values of attenuation were significantly different between samples prepared with 0.01 and 0.1 M NaCl, although no difference was shown in the overall ultrasonic behavior. WPI and beta-lactoglobulin showed similar ultrasonic properties during heating, but some differences were noted in the values of attenuation of WPI solutions, which may relate to a less homogeneous distribution of aggregates caused by the presence of alpha-lactalbumin and other minor proteins in WPI.  相似文献   

13.
The stability of ascorbic acid (AA) incorporated in whey protein isolate (WPI) film and the related color changes during storage were studied. No significant loss of AA content was found in any films prepared from pH 2.0 casting solution stored at 30% relative humidity (RH) and 22 °C over 84 days. Total visible color difference (ΔE*(ab)) of all films slowly increased over storage time. The ΔE*(ab) values of pH 3.5 films were significantly higher than those of pH 2.0 films. The stability of AA-WPI films was found to be mainly affected by the pH of the film-forming solution and storage temperature. Oxidative degradation of AA-WPI films followed Arrhenius behavior. Reduction of the casting solution pH to below the pK(a1) (4.04 at 25 °C) of AA effectively maintained AA-WPI storage stability by greatly reducing oxidative degradation, whereas anaerobic and nonenzymatic browning were insignificant. The half-life of pH 2.0 AA-WPI film at 30% RH and 22 °C was 520 days.  相似文献   

14.
Whey protein concentrate solutions (12% w/v, pH 6.65 +/- 0.05) were pressure treated at 800 MPa for 20-120 min and then examined using size exclusion chromatography (SEC), small deformation rheology, transmission electron microscopy, and various types of one-dimensional (1D) and two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE). The pressure-treated samples showed a time-dependent loss of native whey proteins by SEC and 1D PAGE and a corresponding increase in non-native proteins and protein aggregates of different sizes. These aggregates altered the viscosity and opacity of the samples and were shown to be cross-linked by intermolecular disulfide bonds and by noncovalent interactions using 1D PAGE [alkaline (or native), sodium dodecyl sulfate (SDS), and SDS of reduced samples (SDS(R))] and 2D PAGE (native:SDS and SDS:SDS(R)). The sensitivity of the major whey proteins to pressure was in the order beta-lactoglobulin B (beta-LG B) > beta-LG A > bovine serum albumin (BSA) > alpha-lactalbumin (alpha-LA), and the large internal hydrophobic cavity of beta-LG may have been partially responsible for its sensitivity to high-pressure treatments. It seemed likely that, at 800 MPa, the formation of a beta-LG disulfide-bonded network preceded the formation of disulfide bonds between alpha-LA or BSA and beta-LG to form multiprotein aggregates, possibly because the disulfide bonds of alpha-LA and BSA are less exposed than those of beta-LG either during or after pressure treatment. It may be possible that intermolecular disulfide bond formation occurred at high pressure and that hydrophobic association became important after the high-pressure treatment.  相似文献   

15.
The ability of alphas1/beta-casein and micellar casein to protect whey proteins from heat-induced aggregation/precipitation reactions and therefore control their functional behavior was examined. Complete suppression (>99%) of heat-induced aggregation of 0.5% (w/w) whey protein isolate (pH 6.0, 85 degrees C, 10 min) was achieved at a ratio of 1:0.1 (w/w) of whey protein isolate (WPI) to alphas1/beta-casein, giving an effective molar ratio of 1:0.15, at 50% whey protein denaturation. However, in the presence of 100 mM NaCl, heating of the WPI/alphas1/beta-casein dispersions to 85 degrees C for 10 min resulted in precipitation between pH 6 and 5.35. WPI heated with micellar casein in simulated milk ultrafiltrate was stable to precipitation at pH>5.4. Protein particle size and turbidity significantly (P相似文献   

16.
We explored conditions for dissolving microcrystalline cellulose in high-temperature and high-pressure water without catalyst and in order to produce cellulose II in a rapid and selective manner. For understanding reactions of microcrystalline cellulose in subcritical and supercritical water, its solubilization treatment was conducted using a continuous-flow-type microreactor. It was found that cellulose could dissolve in near- and supercritical water at short treatment times of 0.02-0.4 s, resulting in the formation of cellulose II in relatively high yield after the treatment. Next, characteristics of the cellulose II obtained were investigated. As a result, it was confirmed that the relative crystallinity index and the degree of polymerization of the cellulose II were high values ranging from 80 to 60% and from 50 to 30%, respectively. From these findings, it was suggested that this method had high potential as an alternative technique for the conventional cellulose II production method.  相似文献   

17.
生物降解热塑性全淀粉塑料研制   总被引:3,自引:1,他引:2  
天然淀粉不具有热塑性,无法在塑料机械中进行加工,要使其具有热塑性就必须使其分子结构无序化.该文应用两步法使其增塑后,使淀粉具备了热塑性加工的可能性.以热塑性淀粉为主制备了全淀粉可生物降解塑料,并进行了性能测试和表征,其成本较低且产品性能良好,具有广阔的应用前景.  相似文献   

18.
Sterilized biofilms based on soy protein isolate (SPI, S system) and a 1:1 mixture of SPI and whey protein isolate (WPI, SW system) were achieved through the formation of cross-links by means of gamma-irradiation combined with thermal treatments. The effect of the incorporation of carboxymethylcellulose (CMC) and poly(vinyl alcohol) was also examined. gamma-Irradiation combined with thermal treatment improved significantly the mechanical properties, namely, puncture strength and puncture deformation, for all types of films. Irradiated formulations that contain CMC behave more similarly as elastomers. CMC showed also significant improvements of the barrier properties, namely, water vapor permeability, for irradiated films of the S system and for non-irradiated films of the SW system.  相似文献   

19.
The interactions of proteins during the heat treatment of whey-protein-isolate (WPI)-based oil-in-water emulsions with and without added hydroxylated lecithin were studied by examining the changes in droplet size distribution and the quantity and type of adsorbed and unadsorbed proteins. Heat treatment at 90 degrees C of WPI emulsions resulted in an increase in total adsorbed protein; unadsorbed beta-lactoglobulin (beta-lg) was the main protein interacting with the adsorbed proteins during the first 10 min of heating, but after this time, unadsorbed alpha-lactalbumin (alpha-la) also associated with the adsorbed protein. In emulsions containing hydroxylated lecithin, the increase in total adsorbed protein during heat treatment was much lower and the unadsorbed beta-lg did not appear to interact with the adsorbed proteins during heating. However, the behavior of alpha-la during heat treatment of these emulsions was similar to that observed in the emulsions containing no hydroxylated lecithin. In the presence of NaCl, the particle size of the emulsion droplets and the quantities of adsorbed protein increased markedly during heating. Emulsions containing hydroxylated lecithin were less sensitive to the addition of NaCl. These results suggest that the binding of hydroxylated lecithin to unfolded monomers or intermediate products of beta-lg reduces the extent of heat-induced aggregation of beta-lg and consequently decreases the interactions between unadsorbed beta-lg and adsorbed protein. This was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated whey protein and hydroxylated lecithin solutions.  相似文献   

20.
The contribution of thermal and radiative treatments as well as the presence of some excipients, namely glycerol, carboxymethylcellulose (CMC), pectin, and agar, on the formation of protein-protein interactions as well as the formation and loss of protein-water interactions was investigated by means of differential scanning calorimetry in an isothermal mode. Protein-water interactions were assessed through measurement of the heat of the wetting parameter. Isothermal calorimetry measurements pointed out that gamma-irradiation does not favor protein-water interactions, as reflected by its endothermic contribution (P < or = 0.05) to the heat of wetting values. Although significant (P < or = 0.05), the effect of the thermal treatment on endothermic responses using isothermal calorimetry was found to be somewhat lower. Among excipients added to biofilm formulations, glycerol generated the most important losses of protein-water interactions, as inferred by its significant (P < or = 0.05) endothermic impact on the heat of wetting values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号