首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of urea and urea mixed with different doses of two nitrification inhibitors, dicyandiamide (DCD) and karanjin [a furanoflavonoid, extracted from seeds of the karanja (Pongamia glabra Vent.) tree], on methane (CH4) consumption was examined in a Typic Ustochrept (alluvial inceptisol) soil, collected from a field under rice-wheat rotation. The soil, fertilized with urea (100 mg N kg-1 soil) and urea combined with different doses of the two inhibitors, DCD and karanjin (each added at 5%, 10%, 15%, 20% and 25% of applied N), was incubated at 25°C, at field capacity moisture content for 35 days. The methane consumption rate ranged between 0.2 and 1.7 µg CH4 kg-1 soil day-1 with little temporal variation (CV =10–31%). It was significantly higher in the control (no fertilizer-N) than other treatments except for a few cases, while total CH4 consumption in the incubation period was significantly higher in the control than other treatments. Methane consumption rate was found to be negatively and positively correlated with soil NH4 + and NO2 - + NO3 - content, respectively. Mean CH4 consumption rate, as well as total CH4 consumption, was lower on the addition of karanjin due to slower nitrification and higher conservation of NH4 + released from applied urea. Addition of urea led to a 17% reduction of total CH4 consumption while urea combined with karanjin and DCD had 50–64% and 19–34% reduction, respectively. Karanjin was a more effective nitrification inhibitor than DCD during the incubation period.  相似文献   

2.
Nitrous oxide (N2O) emissions were monitored for a period of 60 days in a pot culture study, from two kharif (June-September) and two rabi (October-March) season legumes, which were grown on a Typic Ustochrept, alluvial sandy loam soil. Black gram (Vigna mungo L. Hepper), var. T-9, and soybean (Glycine max L. Merril), var. Punjab 1, were taken up in kharif season whereas lentil (Lens esculenta Moench), var. JLS-1, and Bengal gram (Cicer arietinum L.), var. BGD-86, were grown in rabi season. All the crops were grown with and without urea and one pot (containing soil but with no fertilizer or crop) was used as a control. Nitrous oxide emissions were significantly higher in unfertilized cropped soil than in the control, while the addition of urea to the crops further increased the emissions. Significant emissions occurred during third and seventh week after sowing for all the treatments in both kharif and rabi seasons. In kharif, soil cropped with soybean had higher total N2O-N emission than soil sown with black gram both under fertilized and unfertilized conditions; while in rabi, lentil had a higher total N2O-N emission than Bengal gram under both fertilized and unfertilized conditions. In kharif, total N2O-N emissions ranged from 0.53 (control) to 3.84 kg ha-1 (soybean+urea), while in rabi it ranged from 0.45 (control) to 3.06 kg ha-1 (lentil+urea). Higher N2O-N emissions in kharif than in rabi was probably due to the favorable effect of temperature on nitrification and denitrification in the former season. The results of the study indicated that legume crops may lead to an increase in N2O formation and emission from soils, the extent of which varies from crop to crop.  相似文献   

3.
To identify the key soil parameters influencing N2O emission from the wheat-growing season, an outdoor pot experiment with a total of 18 fertilized Chinese soils planted with wheat was conducted in Nanjing, China during the 2000/2001 wheat-growing season. Average seasonal N2O-N emission for all 18 soils was 610 mg m-2, ranging from 193 to 1,204 mg m-2, approximately a 6.2-fold difference between the maximum and the minimum. Correlation analysis indicated that the seasonal N2O emission was negatively correlated with soil organic C (r2=0.5567, P<0.001), soil total N (r2=0.4684, P<0.01) and the C:N ratio (r2=0.4530, P<0.01), respectively. A positive dependence of N2O emission on the soil pH (r2=0.3525, P<0.01) was also observed. No clear relationships existed between N2O emission and soil texture, soil trace elements of Fe, Cu and Mg, and above-ground biomass of the wheat crop at harvest. A further investigation suggested that the seasonal N2O-N emission (E, mg m-2) can be quantitatively explained by E=1005-34.2SOC+4.1Sa (R2=0.7703, n=18, P=0.0000). SOC and Sa represent the soil organic C (g kg-1) and available S (mg kg-1), respectively.  相似文献   

4.
元素硫和双氰胺对菜地土壤铵态氮硝化抑制协同效应研究   总被引:4,自引:0,他引:4  
采用好气培养法,研究了双氰胺(DCD)、元素硫(S0)和元素硫分解中间物(S2O32-)及其组合对蔬菜地土壤氮素硝化抑制作用。结果表明,在培养试验72 d内,DCD+S0、DCD、DCD+ Na2S2O3处理土壤NH4+-N总量分别是N处理的5. 8、5.1、5.9倍;S0、Na2S2O3处理分别是N处理的1.8、1.4倍;而所有硝化抑制剂(DCD、S0、S2O32-)处理土壤NO3--N含量显著低于N处理,表明DCD、S0和S2O32-均能抑制菜地土壤铵态氮硝化。培养试验开始8 d后,Na2S2O3和DCD对铵态氮硝化抑制产生协同效应,16 d后S0和DCD对铵态氮硝化抑制也产生协同效应,这可能是由于S0 氧化中间体S2O32-、S4O62-具有抑制DCD降解作用,延长了DCD硝化抑制作用时间。建议蔬菜生产上推荐使用DCD+S0组合,以提高氮素利用率。  相似文献   

5.
Volatilization of NH3 from soil is a major N-loss mechanism that reduces the efficiency of applied N fertilizers, and causes environmental pollution. Strategies are needed to reduce the loss. The influences of dicyandiamide (DCD), farmyard manure (FYM) and irrigation on NH3 volatilization from an alluvial soil in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system was studied using the acid trap method. The loss of NH3 in the rice-wheat system ranged from 38.6 kg N ha-1 from the unfertilized soil to 69.0 kg N ha-1 in the treatment with urea+DCD. Substitution of 50% N provided through urea by FYM reduced NH3-N volatilization by 10% in rice and wheat as compared to the urea treatment. Application of DCD increased NH3 volatilization in wheat by 7% but in rice it had no effect. The irrigation level had no effect on NH3 volatilization in rice but fewer irrigations with fewer splits of N in wheat resulted in higher NH3 volatilization. Application of DCD and FYM with urea had similar effects on grain yield and N uptake by rice and wheat as that of the urea treatment. The study showed that integrated use of organic manure and chemical fertilizer has the potential to reduce the loss of N due to volatilization and thereby minimize environmental pollution. Nitrification inhibitors, which are reported to be useful in increasing the N-use efficiency by reducing the leaching and denitrification losses of N, however, may increase N loss due to volatilization.  相似文献   

6.
The effects of urea, (NH4)2SO4, KNO3, and NH4NO3 on nitrous oxide (N2O) emission from soil at field capacity and submerged condition were studied during 120 days in the laboratory. Soils in both moisture regimes gave higher emissions in the beginning, which were reduced later. Total emission of N2O was higher at submergence as compared to field capacity regardless of fertilizer type. At field capacity soil fertilized with ureaemitted the highest amount of N2O (1903 μg N2O-N kg-1 soil) during 120 days while at submerged condition, soil with NH4NO3 gave the highest emission (4843 μg N2O-N kg-1 soil). In another study, the efficacy of seven nitrification inhibitors in reducing the emission of N2O-N from soil fertilized with urea was tested in the laboratory. Nitrapyrin, 2-amino-4-chloro-6-methylpyrimidine (AM), and dicyandiamide (DCD) reduced the emission to 12, 24, and 63% that of urea, respectively, whereas sodium thiosulphate, sulphur, acetylene,and thiourea had no effect on emission of N2O. In submerged conditions none of the inhibitors reduced the emission.  相似文献   

7.
A field experiment was conducted to determine N2O concentrations in the soil profile and emissions as influenced by the application of N fertilizers and manure in a typical Japanese Andisol, which had been under a rotation of oat and carrot for the previous 3 years. The treatments include ammonium sulphate (AS), controlled-release fertilizer (CRF) and cattle manure (CM) in addition to a control; all the fertilizers were applied either at 150 kg N ha-1 or 300 kg N ha-1 at the time of sowing carrot. N2O emissions from the soil surface were measured with closed-chamber techniques, while N2O concentrations in the soil profile were measured using stainless steel sampling probes inserted into the soil at depths of 10, 20, 40, 60, 80 and 100 cm. Moreover, soil water potential, soil temperature and rainfall data were also recorded. The results indicated that N2O concentrations in the soil profile were always greater than in the atmosphere, ranging from 0.36 µl N2O-N l-1 to 5.3 µl N2O-N l-1. The relatively large accumulation of N2O in the lower profiles may be a significant source for N2O flux. Taking the changes of soil mineral N into consideration, most emissions of N2O were probably produced from nitrification. The accumulation of N2O in the soil profile and emissions to the atmosphere were differently influenced by the amendments of N fertilizers and manure, being consistently higher in CRF than in CM and AS treatments at the corresponding application rates, but no significant difference existed with respect to the various N sources.  相似文献   

8.
Use of renewable N and C sources such as green manure (GM) and crop residues in rice-wheat cropping systems of South Asia may lead to higher crop productivity and C sequestration. However, information on measurements of gaseous N losses (N2O+N2) via denitrification and environmental problems such as N2O and CO2 production in rice-wheat cropping systems is not available. An acetylene inhibition-intact soil core technique was employed for direct measurement of denitrification losses, N2O and CO2 production, in an irrigated field planted to rice (Oryza sativa L.) and wheat (Triticum aestivum L.) in an annual rotation. The soil was a coarse-textured Tolewal sandy loam soil (Typic Ustochrept) and the site a semi-arid subtropical Punjab region of India. Wheat residue (WR, C:N=94) was incorporated at 6 t ha-1 and sesbania (Sesbania aculeata L.) was grown as GM crop for 60 days during the pre-rice fallow period. Fresh biomass of GM (C:N.=18) at 20 or 40 t ha-1 was incorporated into the soil 2 days before transplanting rice. Results of this study reveal that (1) denitrification is a significant N loss process under wetland rice amounting to 33% of the prescribed dose of 120 kg N ha-1 applied as fertilizer urea-N (FN); (2) integrated management of 6 t WR ha-1 and 20 t GM ha-1 supplying 88 kg N ha-1 and 32 kg FN ha-1 significantly reduced cumulative gaseous N losses to 51.6 kg N ha-1 as compared with 58.2 kg N ha-1 for 120 kg FN ha-1 alone; (3) application of excessive N and C through applying 40 t GM ha-1 (176 kg N ha-1) resulted in the highest gaseous losses of 70 kg N ha-1; (4) the gaseous N losses under wheat were 0.6% to 2% of the applied 120 kg FN ha-1 and were eight- to tenfold lower (5-8 kg N ha-1) than those preceding rice; (5) an interplay between the availability of NO3- and organic C largely controlled denitrification and N2O flux during summer-grown flooded rice whereas temperature and soil aeration status were the primary regulators of the nitrification-denitrification processes and gaseous N losses during winter-grown upland wheat; (6) the irrigated rice-wheat system is a significant source of N2O as it emits around 15 kg N2O-N ha-1 year-1; (7) incorporation of WR in rice and rice residue (C:N=63) in wheat increased soil respiration, and increased CO2 production in WR- and GM-amended soils under anaerobic wetland rice coincided with enhanced rates of denitrification; and (8) with adequate soil moisture, most of the decomposable C fraction of added residues was mineralized within one crop-growing season and application of FN and GM further accelerated this process.  相似文献   

9.
Karanjin, a furanoflavonoid (3-methoxy furano –?2 , 3 , 7, 8-flavone), is obtained from the seeds of karanja tree (Pongamia glabra Vent.), which is reported to have nitrification inhibitory properties but has been tested in few soil types. Efficiency of karanjin as a nitrification inhibitor in seven different soils of India was tested in a laboratory incubation study. The soils (800?g) were adjusted to field capacity moisture content, fertilized with urea and urea combined with karanjin at a rate of 20% of applied urea-N (100?mg?kg???1 soil) and incubated at 35°C for a period of 7 weeks, during which urea [CO(NH2)2], ammonium (NH4 ?+?), nitrite (NO2 ???) and nitrate (NO3 ???) content in the soils was measured periodically and nitrification inhibition at different stages was calculated. Urea hydrolysis was almost complete within 72?h of application in all the soils and was not affected by karanjin. Karanjin had conserved ammonium in all the soils at all stages and nitrate formation was effectively minimized. Nitrite in soils was short-lived and low. Nitrification inhibition by karanjin remained high for a period of approximately 6 weeks, decreased with time and ranged from 9?–?76% for all the soils. The study shows that this plant product can be an effective nitrification inhibitor in several types of soil.  相似文献   

10.
N2O and NO emissions from an Andisol maize field were studied. The experimental treatments were incorporation of urea into the plough layer at 250 kg N ha-1 by two applications (UI250), band application of urea at a depth of 8 cm at 75 kg N ha-1 plus incorporation of urea into the plough layer at 75 kg N ha-1 (UB150), band application of polyolefin-coated urea at a depth of 5 cm at 150 kg N ha-1 (CB150), and a control (without N application). N2O fluxes from UI250 and UB150 peaked following the incorporation of supplementary fertilizer, and declined to the background level after that, while the N2O flux from CB150 was relatively low but remained at a constant level until shortly after harvest. Accordingly, the total N2O emissions during the whole cultivation period from the three treatments were not significantly different. The fertilizer-derived N2O-N losses from UI250, UB150 and CB150 were 0.15%, 0.27% and 0.28% of the applied N, respectively. However, it was suggested that, due to the low plant N recovery, UI250 had a significantly larger potential for indirect N2O emission than the other treatments. On the other hand, NO emissions from UI250 and UB150 were 12 times higher than that from CB150, and the fertilizer-derived NO-N losses from the three treatments were 0.16%, 0.27% and 0.026% of the applied N, respectively. Significant NO fluxes were detected only when urea-N fertilizer was surface-applied and incorporated into plough-layer soil.  相似文献   

11.
 N2O emissions from a transplanted irrigated rice grown on a Typic Ustochrept soil at New Delhi, India, were studied to evaluate the effect of N fertilizers, i.e. urea and (NH4)2SO4, alone and in combination with the nitrification inhibitors dicyandiamide (DCD) and thiosulphate. The addition of urea and (NH4)2SO4 increased N2O emissions considerably when compared to no fertilizer N application (control). N2O measurement in the field was done by a closed-chamber method for a period of 98 days. The application of urea with DCD and thiosulphate reduced N2O fluxes considerably. The highest total N2O-N emission (235 g N2O-N ha–1) was from the (NH4)2SO4 treatment, which was significantly higher than the total N2O-N emission from the urea treatment (160 g N2O-N ha–1). DCD reduced N2O-N emissions by 11% and 26% when applied with urea and(NH4)2SO4, respectively, whereas thiosulphate in combination with urea reduced N2O-N emissions by 9%. Total N2O-N emissions were found to range from 0.08% to 0.14% of applied N. N2O emissions were low during submergence and increased substantially during drainage of standing water. Received: 20 October 1999  相似文献   

12.
Net N mineralization was studied in three different forest sites (Belgium): a mixed deciduous forest with oak (Quercus robur L. and Quercus rubra L.) and birch (Betula pendula Roth) as dominant species, a deciduous stand of silver birch (Betula pendula) and a coniferous stand of Corsican pine (Pinus nigra ssp. Laricio). The organic (F + H) layer and mineral soil at different depths (0-10, 10-20 and 20-30 cm) were sampled at three locations in the mixed deciduous forest (GE, GF1, GF2), at one location in the silver birch stand (SB) and one in the Corsican pine stand (CP). All samples were incubated over 10 weeks under controlled temperature and moisture conditions. The net N mineralization rates in the organic and upper mineral layer (0-10 cm) were found to be significantly different from the other layers and accounted for 66-95% of the total mineralization over the first 30 cm. Net N mineralization rates in the organic layer ranged from 4.2 to 27.3 mg N m-2 day-1. Net N mineralization and nitrification rates were positively correlated. For the mineral soil, net N mineralization rates decreased with depth and the upper 10 cm showed significantly higher rates, ranging from 8.9 to 33.5 mg N m-2 day-1. The rates of the 10-20 cm and 20-30 cm sublayers were similar, ranging from 1.2 to 7.4 mg N m-2 day-1. The net N mineralization rates for the total mineral layer (0-30 cm) ranged from 17.4 mg N m-2 day-1 (SB) to 36.1 mg N m-2 day-1 (CP). Both from PCA and multiple regression analysis, we could conclude that net N mineralization rates were closely related to the initial mineral N content (Ninitial). Furthermore, significant correlations were observed between the net N mineralization rate, the total carbon (TC) and NH4+-N content for the mineral layers and between net N mineralization rate, total nitrogen (TN), hemicellulose content and C/N for the organic layers.  相似文献   

13.
Nitrification inhibitors specifically retard the oxidation of NH4+ to NO2- during the nitrification process in soil. In this study, the influence of soil properties on the nitrification-inhibiting effect of 3,4-dimethylpyrazole-phosphate (DMPP), a newly developed nitrification inhibitor, has been investigated. Based on short-term incubation experiments, where the degradation of DMPP could be largely disregarded, the oxidation of the applied NH4+ was more inhibited in sandy soils compared with loamy soils. The influence of soil parameters on the relative NO2- formation could be described by a multiple regression model including the sand fraction, soil H+ concentration and soil catalase activity (R2=0.62). Adsorption studies showed that the binding behaviour of DMPP was influenced markedly by soil textural properties, viz. the clay fraction (r2=0.61). The adsorption of DMPP was found to be an important factor for the inhibitory effect on NH4+ oxidation in a short-term incubation (r2=0.57). It is concluded that the evaluated soil properties can be used to predict the short-term inhibitory effect of DMPP in different soils. The significance of these results for long-term experiments under laboratory and field conditions needs further investigation.  相似文献   

14.
In a 3-year field experiment, the effect of the nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) on the release of N2O, CO2, and on CH4 oxidation, was examined in comparison to that of dicyandiamide (DCD) on N-fertilized and unfertilized experimental sites. Soil samples were analysed simultaneously for the concentrations of N2O retained in the soil body, NH4+, NO2-, NO3-, and for the degradation kinetics of DMPP as well as DCD. DMPP decreased the release of N2O on fertilized plots by 41% (1997), 47% (1998) and 53% (1999) (on average by 49%) while DCD reduced N2O emissions by 30% (1997), 22% (1998) and 29% (1999) (on average by 26%). In addition, the NIs seemed to decrease the CO2 emissions of each fertilized treatment. DCD reduced the release of CO2 by an average of 7% for the 3 years (non-fertilized 10%), and DMPP reduced it by an average of up to 28% (non-fertilized 29%). Furthermore, both NIs failed to affect CH4 oxidation negatively. The plots that received either DCD or DMPP even seemed to function as enhanced sinks for atmospheric CH4. DMPP apparently stimulated CH4 oxidation of N-fertilized plots by ca 28% in comparison to the control. In total, DCD and DMPP reduced the global warming potential of N-fertilized plots by 7% and 30%, respectively. Further, DCD and DMPP diminished the amount of N2O retained in the soil by 52% and 61%, respectively. The concentrations of NH4+ remained unaffected by both NIs, whereas the amounts of NO2- diminished in the plots treated with DCD by 25% and with DMPP by 20%. In both NI treatments NO3- concentrations in the soil were 23% lower than in the control. DMPP and DCD did not affect the yields of summer barley, maize and winter wheat significantly. DCD was mineralized more rapidly than DMPP.  相似文献   

15.
There is growing interest in N2O and CH4 transport through rice plants, but very little information is available on the effects of inhibitors on these gaseous emissions during rice growth and through rice plants. The closed chamber technique was used to study the effect of the urease inhibitor hydroquinone (HQ) and the nitrification inhibitor dicyandiamide (DCD) on N2O and CH4 emissions. As rice plants grew, the N2O emission through rice plants was significantly reduced in all treatments; N2O emissions were always lower in the presence than in the absence of inhibitor(s). These variations paralleled those in NO3--N content of fresh rice plants. During the rice growth period, increasing NO3--N content in rice plants paralleled the increase in the N2O emission through rice plants. Hence, NO3--N in young rice plants can substantially contribute to the plant-mediated N2O flux. A substantial CH4 emission through rice plants occurred at their vigorous growth stage; CH4 emissions were always lower in the presence than in the absence of inhibitor(s). Under the experimental conditions, application of DCD, especially of DCD+HQ, could significantly improve the growth of rice, and reduce the emissions of N2O and CH4 during rice growth.  相似文献   

16.
Little information is available on the effects of urease inhibitor, N-(n-butyl)thiophosphoric triamide (NBPT), and nitrification inhibitor, dicyandiamide (DCD), on nitrous oxide (N2O) emissions from fluvo-aquic soil in the North China Plain. A field experiment was conducted at the Fengqiu State Key Agro-Ecological Experimental Station, Henan Province, China, to study the influence of urea added with NBPT, DCD, and combination of both NBPT and DCD on N2O emissions during the maize growing season in 2009. Two peaks of N2O fluxes occurred during the maize growing season: the small one following irrigation and the big one after nitrogen (N) fertilizer application. There was a significant positive relationship between ln [N2O flux] and soil moisture during the maize growing season excluding the 11-day datasets after N fertilizer application, indicating that N2O flux was affected by soil moisture. Mean N2O flux was the highest in the control with urea alone, while the application of urea together with NBPT, DCD, and NBPT + DCD significantly lowered the mean N2O flux. Total N2O emission in the NBPT + DCD, DCD, NBPT, and urea alone treatments during the experimental period was 0.41, 0.47, 0.48, and 0.77 kg N2O–N ha−1, respectively. Application of urea with NBPT, DCD, and NBPT + DCD reduced N2O emission by 37.7%, 39.0%, and 46.8%, respectively, over urea alone. Based on our findings, the combination of DCD and NBPT together with urea may reduce N2O emission and improve the maize yield from fluvo-aquic soil in the North China Plain.  相似文献   

17.
Heterotrophic N2-fixing bacteria are a potentially important source of N2 fixation in rice fields due to the moist soil conditions. This study was conducted at eight sites along a geographic gradient of the Yangtze River Plain in central China. A nitrogen-free solid malate-sucrose medium was used to isolate heterotrophic N2-fixing bacteria. Numbers of the culturable N2-fixing bacteria expressed as CFU (colony forming units) ranged between 1.41ǂ.42᎒6 and 1.24ǂ.23᎒8 in the sampled paddy field sites along the plain. Thirty strains with high ARA (acetylene reduction activity) were isolated and purified; ARA of the strains varied from 0.9 to 537.8 nmol C2H4 culture-1 h-1, and amounts of 15N fixed ranged between 0.008 and 0.4866 mg·culture-1·day-1. According to morphological and biochemical characteristics, 14 strains were identified as the genus Bacillus, 2 as Burkholderia, 1 as Agrobacterium, 4 as Pseudomonas, 2 as Derxia, 1 as Alcaligenes, 1 as Aeromonas, 2 as Citrobacter, and 3 strains belonged to the corynebacter-form group.  相似文献   

18.
A pot experiment with a loam soil and spring wheat as test crop showed that an application of dicyandiamide (DCD), and especially its combination with hydroquinone (HQ), gave a much larger recovery of soil urea-15N than treatments based on the application of urea alone or urea plus HQ. Most of the urea-15N applied to soil was present as organic plus chemically fixed 15N in the DCD and DCD plus HQ treatments. These two treatments showed the smallest accumulation of urea-derived (NO3-+NO2-)-15N. Under well-drained conditions, there was a synergistic effect of the nitrification inhibitor DCD and the urease inhibitor HQ on urea-15N transformations and the recovery of fertilizer 15N in soil after the application of urea.  相似文献   

19.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

20.
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N2O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N2O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N2O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH4+)and nitrate(NO3-)concentrations,cumulative amount and yield-scaled N2O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N2O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO3-concentration by nitrapyrin was also observed.The average yield-scaled N2O emission was 13.6 g N2O-N kg-1N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N2O-N kg-1N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N2O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号