首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Spatial location of carbon decomposition in the soil pore system   总被引:5,自引:0,他引:5  
We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore‐size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either ?75 kPa or ?5 kPa and for either 4 or 90 days. Pore‐size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label‐derived residual C, label‐derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore‐size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters < 4 µm. Regression analysis suggested that at matric potentials of both ?75 kPa and ?5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.  相似文献   

2.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

3.
The question of whether the response of earthworms to soil moisture is governed by their reaction to soil wetness (moisture content) or to soil water energy (matric suction) was examined in two species of earthworm using moisture gradients in three contrasting soil types with clay contents varying from 4 to 39%. Gravimetric moisture gradients ranging over 5–30% were established in horizontal cores comprising 12 or 14 sections containing loosely packed soil. Earthworms were introduced to each section at the beginning of each experiment. The earthworms moved from sections containing dry soil into adjacent sections containing moister soil. Clear effects were evident after 6 h but these became more obvious after 96 h. For the earthworm Aporrectodea rosea, the threshold soil mositure level at which earthworms were induced to move away from dry soil was a matric suction of about 300 kPa (pF 3.4) and was independent of soil type. In contrast, for A. trapezoides, the threshold soil moisture varied with soil type (sandy loam 15 kPa, loam 25 kPa, clay 300 kPa). We conclude that, for the earthworm A. rosea, matric suction and not water content of soil provided the cue by which the earthworm recognized dry soil. For A. trapezoides, there was an interaction between matric suction and soil type in which the response of A. trapezoides to soil moisture varied with soil texture and the threshold for avoidance of dry soil ranged from a matric suction of 300 kPa (20% w/w) in clay to 15 kPa (10% w/w) in sandy loam.  相似文献   

4.
The potential for transfer of the protozoan pathogen Cryptosporidium parvum through soil to land drains and, subsequently, water courses following the application of livestock waste to land was monitored in the laboratory using simulated rainfall and intact soil cores. Following irrigation over a 21-day period, Cryptosporidium parvum oocysts applied to the surface of soil cores (initial inoculum concentration 1×108 oocysts core–1) were detected, albeit in low numbers, in the leachates from clay loam and silty loam soils but not in that from a loamy sand soil. Variations in leaching patterns were recorded between replicate cores. At the end of the study soil cores were destructively sampled to establish the location of oocysts remaining within the soil. Distribution within cores was similar in all three soil types. The majority (72.8+-5.2%) of oocysts were found in the top 2 cm of soil, with numbers decreasing with increasing depth to 13.2±2.8%, 8.39±1.4%, and 5.36±1.4% at depths of 10, 20, and 30 cm, respectively.  相似文献   

5.
The effects of bacterial-feeding nematodes on bacterial number, activity, and community composition were studied through a microcosm experiment using sterilized soil inoculated with soil bacteria (soil suspension) and with bacteria and three species of bacterial-feeding nematodes ( Cephalobus persegnis, Protorhabditis filiformis, and Caenorhabditis elegans). Catalyzed reporter deposition-fluorescence in situ hybridization, CO2 evolution, and denaturing gradient gel electrophoresis (DGGE) of PCR ampli- fied 16S rRNA gene fragments were used to investigate bacterial numbers, antivity, and community composition, respectively. Our results showed that bacterial numbers and activity significantly increased in the presence of bacterial-feeding nematodes, which indicated that bacterial-feeding nematodes had a significant positive effect on soil bacteria. The different nematode species had different effects on bacterial numbers and activity. C. persegnis and P. filiformis, isolated from native soil, increased the bacterial number and activity more than C. elegans. The DGGE analysis results showed that dominant bacterial species significantly differed among the treatments, which suggested that bacterial-feeding nematode species modified the bacterial community composition in soil. Further gene sequence analysis results showed that the dominant bacterial species in this study were gram-negative bacteria. Given the completely same conditions except nematode species, the varied selective feeding behavior of different nematode species was the most likely reason for the altered bacterial community composition. Overall, the alteration of bacterial numbers, activity and community composition resulting from the bacterial-feeding nematodes may ult!mately affect soil ecological functioning and processes.  相似文献   

6.
Abstract

Higher rates of nitrification often reported in fine than in coarse textured soils may not be a direct effect of soil texture because in most of the earlier studies, soil water content has been usually expressed as gravimetric, volumetric or soil's water‐holding capacity without consideration of differences in density/ porosity for soils of varying texture. The same water content in texturally different soils could provide very different conditions of soil aeration and associated nitrifying activity. Effects of soil texture on nitrification was studied by incubating three semiarid subtropical soils having sandy loam, loam, and silty clay textures at 35°C for 30 days using water‐filled pore space (WFPS) as the criterion of soil aeration. Upland or aerobic soil conditions, simulated by incubating soil at 60% WFPS, exhibited very fast nitrification of added fertilizer nitrogen (N) and most of the applied 100 mg of ammonium‐nitrogen (NH4+‐N/kg soil) was nitrified within 10 days of incubation in all three soils irrespective of the differences in texture. Under flooded soil conditions (120% WFPS), nitrification was slow and only 84 to 92% of the applied NH4+‐N was nitrified even after 30 days. Nitrification could be described by first‐order kinetics for both the upland and flooded moisture regimes, thus nitrification rate depended upon NH4+ concentration. At similar gravimetric water contents, rates of nitrification differed greatly in soils of varying texture, but when varying water‐holding capacity and bulk density were accounted for using WFPS, all the soils behaved similarly at 60% WFPS. Under impeded aeration (flooded conditions), however, substantial differences were observed in nitrification in soils of varying texture, the largest in fine‐textured Chamror silty clay followed by Habowal loam and the smallest in Tolewal sandy loam soil. These results illustrate the utility of WFPS, compared with soil water content, and its reliability as an indicator of aeration dependent nitrification for soils of varying texture.  相似文献   

7.
Summary Soil texture affects pore space, and bacterial and protozoan populations in soil. In the present study we tested the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils because they have a larger volume of protected pore space available to them. The experiment consisted of three sterilized Orthic Black Chernozemic soils (silty clay, clay loam, and sandy loam) inoculated with bacteria, two treatments (with and without protozoa), and five sampling dates. The soils were amended with glucose and mineral N on day 0. On day 4 bacterial numbers in all three soils were approximately 3×109 g–1 soil. The greatest reduction in bacteria due to protozoan grazing occurred between day 4 and day 7. Compared to the treatment without protozoa, bacteria in the treatment with protozoa were reduced by 68, 50, and 75% in the silty clay, clay loam, and sandy loam, respectively. On day 4, 2 days after the protozoan inoculation, all protozoa were active. The numbers were 10330, 4760, and 15 380 g–1 soil for the silty clay, clay loam, and sandy loam, respectively. Between day 4 and day 7, the period of greatest bacterial decline, total protozoa increased greatly to 150480, 96160, and 192100 g–1 soil for the three soils, respectively. Most protozoa encysted by day 7. In all soils the addition of protozoa significantly increased CO2–C evolution per g soil relative to the treatment without protozoa. Our results support the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils.  相似文献   

8.
《Soil Use and Management》2018,34(3):370-379
The unsaturated soil hydraulic conductivity accounting for film flow is important for understanding soil hydrological and biological processes, especially in arid and semi‐arid regions. Recently, a theoretically based hydraulic conductivity model was developed to describe the hydraulic conductivity as a function of water content. We have used this model to compare seven soil water retention functions commonly used for predicting soil hydraulic conductivity due to film flow. A total of 30 soils, varying in basic properties, were selected from the Unsaturated Soil Hydraulic Database to evaluate the seven functions. The Webb method was applied to identify the critical soil matric potential (h c) below which thin film flow controls water movement. Soil hydraulic conductivity measurements at matric potential below h c were then used for curve fitting according to the seven functions. Slight differences were observed among the functions in predicting soil hydraulic conductivity due to film flow. Six of the seven functions in combination with the hydraulic conductivity model described the hydraulic conductivity due to film flow well, according to the terms of the coefficient of efficiency. The relatively poor performance of the one exception was due to the fact that the linear shape of the function made it less flexible at low matric potentials. In addition, the effect of textural class on its performance was substantial, showing a poorer fit for the sand soil compared with the loam and clay soils. These findings have important applications related to soil and water resources conservation especially in arid and semi‐arid regions.  相似文献   

9.
Abstract

A glasshouse investigation was undertaken to evaluate the natural potential of fenugreek (Trigonella foenumgraecum L.), spinach (Spinacia oleracea L.), and raya (Brassica campestris L.) for cleanup of chromium (Cr)–contaminated silty loam and sandy soils. Four kilograms of soil per treatment in earthen pots was treated with five levels of chromium [0, 1.25, 2.5, 5.0, and 10.0 mg Cr kg?1 soil through dipotassium chromate (K2Cr2O7], equilibrated for 21 days at field-capacity moisture content, and then fenugreek, spinach, and raya were grown for 60 days after seeding. The concentration of diethylene triamine pentaacetic acid (DTPA)‐extractable Cr increased significantly with increasing rate of Cr application in both soils, but the increase was higher in sandy soil than in silty loam soil. The DTPA‐extractable Cr in both soils decreased after harvesting of crops compared to its concentration in soil before sowing of the crops. The decrease in DTPA‐extractable Cr concentration was highest in soil growing raya and least in the fenugreek‐growing soil. The percent reduction in dry‐matter yield (DMY) with increasing levels of added Cr in comparison to the zero‐Cr control was highest for fenugreek (49 and 52%) followed by spinach (36 and 42%) and lowest for raya (29 and 34%) in silty loam soil and sandy soil, respectively. Also, the percent reduction in mean shoot yield of all crops was higher in sandy soil (41%) compared to silty loam soil (36%), when the rate of applied Cr was increased from 0 to 10 mg Cr kg?1 soil. The DMY of both shoot and root was highest for raya and lowest for fenugreek. The Cr concentration in fenugreek, spinach, and raya increased with increasing level of added Cr in both soils. The concentration of Cr in both shoot and root was highest in raya, followed by spinach and fenugreek. The overall mean uptake of Cr in shoot was almost four times and in root was about two times higher in raya compared to fenugreek. The findings indicated that family Cruciferae (raya) was most tolerant to Cr toxicity, followed by chenopodiacea (spinach) and Leguminosae (fenugreek). Because raya removed the highest amount of Cr from soil, it could be used for pytoremediation of mildly Cr‐contaminated soils.  相似文献   

10.
The water retention characteristic provides the traditional data set for the derivation of a soil's pore‐size distribution. However, the technique employed to achieve this requires that assumptions be made about the way pores interconnect. We explore an alternative approach based on stray field nuclear magnetic resonance (STRAFI‐NMR) to probe the water‐filled pores of both saturated and unsaturated soils, which does not require information relating to pore connectivity. We report the relative size distributions of water‐occupied pores in saturated and unsaturated samples of two sets of glass beads of known particle size, two sands, and three soils (a silty loam, a sandy loam and a loamy sand), using measurements of the NMR T1 proton relaxation time of water. The T1 values are linearly related to pore size and consequently measured T1 distributions provide a measure of the pore‐size distribution. For both the sands and the glass beads at saturation the T1 distributions are unimodal, and the samples with small particle sizes show a shift to small T1 values indicating smaller voids relative to the samples with larger particles. Different matric potentials were used to reveal how the water‐occupied pore‐size distribution changes during drainage. These changes are inconsistent with, and demonstrate the inadequacies of, the commonly employed parallel‐capillary tube model of a soil pore space. We find that not all pores of the same size drain at the same matric potential. Further, we observe that the T1 distribution is shifted to smaller values beyond the distribution at saturation. This shift is explained by a change in the weighted average of the relaxation rates as the proportion of water in the centre of water‐filled pores decreases. This is evidence for the presence of pendular structures resulting from incomplete drainage of pores. For the soils the results are similar except that at saturation the T1 distributions are bimodal or asymmetrical, indicative of inter‐aggregate and intra‐aggregate pore spaces. We conclude that the NMR method provides a characterization of the water‐filled pore space which complements that derived from the water retention characteristic and which can provide insight into the way pore connectivity impacts on drainage.  相似文献   

11.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

12.
为研究施用过量的农用化学品对土壤线虫群落组成及多样性的影响,采用定点试验的方法,在哈尔滨市呼兰区选择典型农田生态系统进行试验,对比研究土壤线虫群落对施用过量的氮肥、磷肥、钾肥、除草剂及杀虫剂的响应。在试验田中共鉴定出土壤线虫27科45属,其中Cephalobus和Aphelenchus为优势属。施用不同浓度的各类农用化学品对土壤线虫群落组成、多样性均产生一定影响。线虫总数及食细菌线虫、食真菌线虫、植物寄生线虫数量在不同处理间均存在显著差异(P<0.05);其中,植物寄生线虫的相对丰度随化肥施用量的升高呈增加趋势。从土壤线虫的生态指数来看,除PPI(植物寄生线虫成熟指数)外,其他生态指数[MI(成熟度指数)、F/B(食真菌线虫与食细菌线虫数量比值)、Evenness(均匀度指数)、SR(丰富度指数)、H’(多样性指数)]在施用不同农用化学品处理之间也存在显著差异,并且,MI随着施用钾肥、氮肥浓度的增加而降低。土壤线虫可以作为揭示施用农用化学品过程中土壤质量变化的生物学指标,其群落及多样性的变化表明土壤线虫群落对农用化学品的过量施用产生了响应,过量施用农用化学品会增加土壤生态系统的干扰,对土壤环境造成威胁。  相似文献   

13.
Microorganisms (e.g., prokaryotes, fungi) are food sources for soil nematodes, but they can also be potential mutualists or pathogens. Understanding the linkages between microorganism and invertebrate diversity in soils requires the ability to distinguish between these microbial roles. We tested the potential of a taxon-specific fluorescent in situ hybridization (FISH) procedure for identifying and localizing microbial rRNA within the bodies of soil nematodes. Our objective was to determine whether the rate of digestion permitted detection and identification of food-source nucleic acids within the nematode digestive system (i.e., pharynges, intestines) before their breakdown. First, using laboratory cultures of Caenorhabditis elegans maintained on Escherichia coli, we were able to localize bacterial rRNA throughout the nematode pharynx with the universal bacterial-probe EUB338, although never in the intestines. Second, we applied the fungal rRNA probe FR1 to Aphelenchus avenae cultured on the fungus Rhizoctonia solani. We were unable to detect fungal rRNA within these nematodes, and it appears that this material may be digested rapidly. Next, we applied our technique to nematodes extracted directly from soils. We were able to localize bacterial rRNA within the pharynges of bacterial-feeding species of nematodes from desert soils. We also localized archaeal rRNA using the probe ARC344. Finally, application of EUB338 to desert soil nematodes revealed the presence of bacteria in the intestines of some nematodes and within the ovary of a single nematode. This technique has great potential for use in understanding the feeding behavior of bacterial-feeding soil nematodes and in studies of nematode:bacterial relationships.  相似文献   

14.
Summary The nematode community in litter and soil was examined for a year in the Chihuahuan desert, before and after supplemental rainfall application. Proportions of nematode-active or anhydrobiotic forms and population densities were determined for 3 treatments: control (natural rainfall), a single, large (25-mm) monthly irrigation pulse, and 4 smaller (6-mm) irrigations spaced at weekly intervals. In litter the greatest nematode abundance was in the 6 mm week–1 treatment (48 nematodes 20 g–1 litter). Bacteriovores and fungivores accounted for approximately 95% of the numbers and biomass in all treatments. In soil, water amendments had no significant effect (P < 0.05) on annual mean densities of total nematodes, fungivores, bacterivores, or omnivore predators. Phytophage densities were greater on both irrigation treatments, with highest densities (9268 m–2) in the 6 mm week–1 soils, which was 5.9% of the total soil nematode density. Total densities of individual trophic groups were not significantly different before or after rainfall. Soil nematode densities fluctuated independently with trophic group, month, and season. Bacterial feeders and omnivore predators were the largest contributor to total soil nematode density and biomass. Prior to irrigation, there were no differences in the percentage of anhydrobiotes on the three treatments. Anhydrobiotes decreased after irrigation in all treatments, and were significantly lower in soils of the larger, monthly irrigation. Nematodes were inactive (anhydrobiotic) and decoupled from decomposition processes when soil water matric potentials reached –0.4 MPa.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

15.
Ten leguminous trees, four exotic species (Australian Acacia) and six indigenous species (three Sahelian Acacia spp. and three Sesbania spp.), were grown for 4 months in a natural Sahelian soil inoculated with or without the endomycorrhizal fungus, Glomus intraradices. In control trials, the determinant factor structuring the soil nematode fauna was the plant species, related plants having a similar influence on the nematode community in the soil. Soil nematode abundance increased from exotic acacias (3.3 g-1 dry soil) to native acacias (11.5 g-1 dry soil) and Sesbania species (17.6 g-1 dry soil). Plant feeding nematodes (mainly Scutellonema and Tylenchorhynchus) were significantly less abundant under exotic acacias (1.4 g-1 dry soil) than under native acacias (7.2 g-1 dry soil) or Sesbania species (7.3 g-1 dry soil). Bacterial feeding nematode density increased from exotic acacias (1.2 g-1 dry soil) to native acacias (3.0 g-1 dry soil) and Sesbania species (7.7 g-1 dry soil) as total densities. However, the differences in the structure of the nematode communities between plant groups were suppressed in the presence of the mycorrhizal fungus. In fact, no difference in nematode densities remained between plant groups when G. intraradices developed in several dominant taxa belonging to different trophic groups, particularly: Tylenchorhynchus, Apelenchina, Cephalobus and Dorylaimoidea. This study clearly indicated that inoculation with the arbuscular mycorrhizal fungus G. intraradices diminished the plant-specific effect on the structure of the soil nematode community.  相似文献   

16.
The increase in protozoan and nematode populations following addition of glucose or barley leaf material to five different mixtures of a sandy loam and a silty clay loam was investigated in 2 experiments. Prescribed soil textures (varying in clay content from 15.6% to 28.6%) were incubated at a matric potential of —10 kPa at 15 °C, and the number of protozoa and nematodes and the amount of inorganic nitrogen were estimated after 0, 2 and 5 weeks. In the first experiment, the effect of amendment with glucose was compared with amendment with barley leaves. Numbers of protozoa increased in soil mixtures amended with both glucose and barley leaves, but nematodes only increased in the treatment with barley leaves. There was a large positive effect of the amount of fine-textured soil on the number of protozoa, whereas the nematodes were not affected by soil texture. In the second experiment, the effect of nematodes on protozoa and nitrogen mineralization was examined. Soil mixtures prepared with sterilised soil were amended with barley leaves and either (1) a soil suspension filtered through a 5 μm mesh to remove nematodes, or (2) a filtered soil suspension and a mixture of nematodes extracted from soil. The nematodes that multiplied in the soil mixtures were almost exclusively bacterial-feeding rhabditids. The nematodes had a significantly positive effect on the number of protozoa but an insignificant effect on N-mineralization. Both protozoa and nematodes were affected positively by the proportion of the fine-textured soil in the soil mixtures, but the positive effect on protozoa was larger than the effect on nematodes.  相似文献   

17.
Summary The leaching of a genetically modified Pseudomonas fluorescens through soil was investigated using intact (undisturbed) soil microcosms over a 2-month period. The microcosms comprised large cylindrical cores of three contrasting soil types (a loamy sand, a sandy loam, and a clay loam) supporting a grass/clover sward. Late log-phase cells of Pseudomonas fluorescens containing lux genes encoding for bioluminescence were applied to the surface of the soil cores. Eighteen hours after application of the inocula, the microcosms were subjected to simulated rain events (9 mm per event) at 3-day intervals and leachates were analysed for the concentration of genetically modified bacteria. The lux-modified pseudomonads were detected immediately in leachate from the clay looam with a steady decline in the concentration of cells with time. Leaching of pseudomonads from the sandy loam and loamy sand only occurred over a few rain events and total recoveries from the leachate were lower than from the clay loam. Leaching patterns are discussed in relation to differences in structure of topsoil and subsoil, which determine the pathways of water flow, and to the matric potential at inoculation, which determines the pore-size classes into which cells were first introduced.  相似文献   

18.
《Applied soil ecology》2000,14(1):27-36
The nematode communities of 36 grassland ecosystems in Romania, belonging to different plant associations and soil types, were studied. The abundance of nematodes, the species and trophic types present, as well as their distribution in relation to plant community and soil characteristics are analyzed and discussed.The abundance of nematodes from the 36 grasslands studied ranged between 0.41 × 106 and 8.57 × 106 individuals/m2, and a total of 121 genera and 145 species of nematodes were found. The highest diversity was found in grasslands developed on brown earth soil (65–67 genera and 74–76 species), with least diversity in those evolving on podzol and lithosol (33–36 genera with 25–28 identified species). Most of the dominant taxa were found in specific soil layers; some obligate plant parasitic genera (e.g., Paratylenchus, Rotylenchus, Criconema) showed preference for deeper soil layers. The nematode diversity index (H′), with values ranging between 2.38 and 3.47, did not differ significantly between the different types of grasslands. Plant feeding, bacterial feeding, hyphal feeding and omnivorous nematodes were the main groups in mountainous grasslands developed on different soil types. Plant feeding and bacterial feeding nematodes dominated the trophic structure and more plant feeders (62–69%) were found in communities of subalpine and alpine grasslands developed on podzol and alpine meadow soil, than in those developed on rendzina and lithosol (27–33%). The ratio of hyphal feeding to bacterial feeding nematodes (Hf/Bf) is constantly in favour of the bacterial feeding group, the values being an indicator of good soil fertility for most studied grasslands. The nematode communities of grasslands are grouped into six main clusters according to their genera affinity and distinguished by different grassland and soil types. Communities from subalpine grasslands developed on rendzina, acid brown and lithosol have the greatest similarities. An ordination of nematode communities in relation to important environmental variables is presented. Environmental variables relevant in explaining the patterns of nematode composition in grasslands, using canonical correspondence analysis (CCA), are: humus, pH, total nitrogen, exchangeable bases and soil type. No single factor could be selected.  相似文献   

19.
Effects of urea amended with urease and nitrification inhibitors on soil nematode communities were studied in a Hapli- Udic Argosol (Cambisol, FAO) in Liaoning Province of Northeast China. A completely random design with four treatments, i.e., conventional urea (CU), slow-release urea amended with a liquid urease inhibitor (SRU1), SRU1 +nitrification inhibitor dicyandiamide (SRU2), and SRU1 + nitrification inhibitor 3,5-dimethylpyrazole (SRU3) and four replicates were applied. Thirty-nine genera of nematodes were identified, with Cephalobus and Aphelenchus being dominant; and in all treatments, the dominant trophic group was bacterivores. In addition, during the growth period of spring wheat (Triticum aestivum L.), soil urease activity was lower in SRUs than in CU. The numbers of total nematodes and bacterivores at wheat heading and ripening stages, and omnivores-predators at ripening stage were higher in SUR3 than in CU, SRU1 and SRU2 (P 〈 0.05).  相似文献   

20.
Abstract. Little is known about the in situ hydrological properties of Zimbabwean soils. This paper describes the water retention and transmission properties of two agriculturally important Zimbabwean fersiallitic soils measured in situ by the instantaneous profile method. The first soil, typical of those used by small scale farmers, is a deep coarse grained granitic sand. The second is a silty clay loam derived from mafic rocks, typical of the red clays associated with Zimbabwe's commercial farming areas. The K -θ functions for each layer of the sand were very similar and the profile could be described by a single function, with permeability increasing with depth. In contrast, the silty clay loam could not be described by a single function, as permeability decreased with depth. However, in both soils water movement became negligible below a matric potential of—0.01 MPa; this is thought to be a more appropriate field approximation of the upper limit of plant available water than—0.033 MPa which is often used for tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号