共查询到20条相似文献,搜索用时 15 毫秒
1.
Oku K Kakizaki M Ono K Ohta M 《The Journal of veterinary medical science / the Japanese Society of Veterinary Science》2011,73(12):1639-1643
Seven Thoroughbred horses were castrated under total intravenous anesthesia (TIVA) using propofol and medetomidine. After premedication with medetomidine (5.0 μg/kg, intravenously), anesthesia was induced with guaifenesin (100 mg/kg, intravenously) and propofol (3.0 mg/kg, intravenously) and maintained with constant rate infusions of medetomidine (0.05 μg/kg/min) and propofol (0.1 mg/kg/min). Quality of induction was judged excellent to good. Three horses showed insufficient anesthesia and received additional anesthetic. Arterial blood pressure changed within an acceptable range in all horses. Decreases in respiratory rate and hypercapnia were observed in all horses. Three horses showed apnea within a short period of time. Recovery from anesthesia was calm and smooth in all horses. The TIVA-regimen used in this study provides clinically effective anesthesia for castration in horses. However, assisted ventilation should be considered to minimize respiratory depression. 相似文献
2.
3.
Tsai YC Wang LY Yeh LS 《The Journal of veterinary medical science / the Japanese Society of Veterinary Science》2007,69(11):1179-1182
The characteristics of recovery from total intravenous anesthesia (TIVA) with propofol and inhalation anesthesia with isoflurane was clinically compared in 149 client-owned dogs that anesthetized for surgical or diagnostic procedures. In all dogs, anesthesia was induced with an intravenous injection of propofol following premedication with acepromazine or diazepam. As a result, 58 dogs anesthetized with propofol-TIVA showed slower but smoother recovery than 91 dogs anesthetized with isoflurane anesthesia. The dogs stood at 34.5 +/- 19.3 and 27.7 +/- 17.2 min after propofol-TIVA and isoflurane anesthesia, respectively. Adverse effects, including hypersalivation, neurologic excitement (paddling, muscle tremor/twitching, opisthotonos) and vomiting/retching, were observed in similar infrequent incidences during the recovery from both anesthetic protocols. Propofol-TIVA is suggested to be an alternative anesthetic protocol for canine practice. 相似文献
4.
5.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse. 相似文献
6.
7.
Umar MA Yamashita K Kushiro T Muir WW 《Journal of the American Veterinary Medical Association》2006,228(8):1221-1227
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia. 相似文献
8.
9.
10.
The median effective dosage (ED50) of propofol for induction of anesthesia was determined in 25 dogs premedicated with acepromazine, 0.05 mg/kg of body weight, and in 35 unpremedicated dogs. The ED50 was found to be 2.2 mg/kg in premedicated dogs and was 3.8 mg/kg in unpremedicated dogs. The mean +/- SD total dosage of propofol required to induce anesthesia in premedicated animals was 2.8 +/- 0.5 mg/kg and was 4.7 +/- 1.3 mg/kg in unpremedicated animals. Signs of excitement were observed in 5 of the unpremedicated dogs, but in none of those that were premedicated. 相似文献
11.
Steffey EP Pascoe PJ Woliner MJ Berryman ER 《American journal of veterinary research》2000,61(10):1225-1231
OBJECTIVE: To quantitate dose- and time-related anesthetic-sparing effects of xylazine hydrochloride (XYL) during isoflurane-induced anesthesia in horses and to characterize selected physiologic responses of anesthetized horses to administration of XYL. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized 2 times to determine the minimum alveolar concentration (MAC) of isoflurane in O2 and to characterize the anesthetic-sparing effect (MAC reduction) after IV administration of XYL (0.5 and 1 mg/kg of body weight, random order). Selected measures of cardiopulmonary function, blood glucose concentrations, and urinary output also were measured during the anesthetic studies. RESULTS: Isoflurane MAC (mean +/- SEM) was reduced by 24.8 +/- 0.5 and 34.2 +/- 1.9% at 42 +/- 7 and 67 +/- 10 minutes, respectively, after administration of XYL at 0.5 and 1 mg/kg. Amount of MAC reduction by XYL was dose- and time-dependent. Overall, cardiovascular and respiratory values varied little among treatments. Administration of XYL increased blood glucose concentration; the magnitude of change was dose- and time-dependent. Urine volume increased but not significantly. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of XYL reduced the anesthetic requirement for isoflurane in horses. The magnitude of the decrease is dose- and time-dependent. Administration of XYL increases blood glucose concentration in anesthetized horses in a dose-related manner. 相似文献
12.
13.
Stuart C Clark‐Price DVM MS Diplomate ACVIM Lysa P Posner DVM Diplomate ACVA 《Veterinary anaesthesia and analgesia》2008,35(6):473-479
ObjectiveTo assess whether recovery from general anesthesia, in an illuminated or a darkened stall, has an effect on time to first movement, time to standing, and recovery score.Study designProspective randomized clinical study.AnimalsTwenty-nine healthy, 2- to 5-year-old horses undergoing surgical correction of dorsal displacement of the soft palate.MethodsEach horse was assigned randomly to recover in either an illuminated (n = 15) or a darkened stall (n = 14). For pre-anesthetic medication, all horses received intravenous (IV) xylazine (0.4 mg kg−1) and butorphanol (0.02 mg kg−1). Anesthesia was induced with midazolam (0.1 mg kg−1) and ketamine (2.2 mg kg−1) IV and maintained on isoflurane in oxygen. Vital parameters, end-tidal CO2 and isoflurane were recorded at 5-minute intervals. At the conclusion of anesthesia, horses were placed in either an illuminated or a darkened stall and xylazine (0.2 mg kg−1) IV was administered at extubation. Video cameras were used to record the horses while they were allowed to recover undisturbed. Video recordings were later viewed and recoveries were evaluated on a 100-point scale by three graders.ResultsHorses in illuminated and darkened recovery stalls were evaluated on total anesthesia time, minimum alveolar concentration hours of isoflurane, time to first movement, time to standing, and total recovery score. There were no significant differences between the two groups in any of the measured parameters.ConclusionRecovering horses in a darkened versus an illuminated recovery stall may provide no benefit.Clinical relevanceDarkening the recovery stalls for horses recovering from general anesthesia may be unnecessary. 相似文献
14.
《Veterinary anaesthesia and analgesia》2023,50(3):238-244
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia. 相似文献
15.
Objective To test the hypothesis that hypercapnic hyperpnea produced using endotracheal insufflation with 5–10% CO2 in oxygen could be used to shorten anesthetic recovery time in horses, and that recovery from sevoflurane would be faster than from isoflurane. Study design Randomized crossover study design. Animals Eight healthy adult horses. Methods After 2 hours’ administration of constant 1.2 times MAC isoflurane or sevoflurane, horses were disconnected from the anesthetic circuit and administered 0, 5, or 10% CO2 in balance O2 via endotracheal tube insufflation. End‐tidal gas samples were collected to measure anesthetic washout kinetics, and arterial and venous blood samples were collected to measure respiratory gas partial pressures. Horses recovered in padded stalls without assistance, and each recovery was videotaped and evaluated by reviewers who were blinded to the anesthetic agent and insufflation treatment used. Results Compared to isoflurane, sevoflurane caused greater hypoventilation and was associated with longer times until standing recovery. CO2 insufflation significantly decreased anesthetic recovery time compared to insufflation with O2 alone without significantly increasing PaCO2. Pharmacokinetic parameters during recovery from isoflurane with CO2 insufflation were statistically indistinguishable from sevoflurane recovery without CO2. Neither anesthetic agent nor insufflation treatment affected recovery quality from anesthesia. Conclusions and clinical relevance Hypercapnic hyperpnea decreases time to standing without influencing anesthetic recovery quality. Although the lower blood gas solubility of sevoflurane should favor a shorter recovery time compared to isoflurane, this advantage is negated by the greater respiratory depression from sevoflurane in horses. 相似文献
16.
Robert J. Brosnan DVM PhD Diplomate ACVA & Eugene P. Steffey VMD PhD Diplomate ACVA 《Veterinary anaesthesia and analgesia》2009,36(5):421-425
Objective We hypothesized that propofol can produce rapidly-reversible, dose-dependent standing sedation in horses.
Study design Prospective randomized, blinded, experimental trial.
Animals Twelve healthy horses aged 12 ± 6 years (mean ± SD), weighing 565 ± 20 kg, and with an equal distribution of mares and geldings.
Methods Propofol was administered as an intravenous bolus at one of three randomized doses (0.20, 0.35 and 0.50 mg kg−1 ). Cardiovascular and behavioral measurements were made by a single investigator, who was blinded to treatment dose, at 3 minute intervals until subjective behavior scores returned to pre-sedation baseline values. Continuous data were analyzed over time using repeated-measures anova and noncontinuous data were analyzed using Friedman tests.
Results There were no significant propofol dose or temporal effects on heart rate, respiratory rate, vertical head height, or jugular venous blood gases (pHv , Pv O2 , Pv CO2 ). The 0.35 mg kg−1 dose caused mild sedation lasting up to 6 minutes. The 0.50 mg kg−1 dose increased sedation depth and duration, but with increased ataxia and apparent muscle weakness.
Conclusions and clinical relevance Intravenous 0.35 mg kg−1 propofol provided brief, mild sedation in horses. Caution is warranted at higher doses due to increased risk of ataxia. 相似文献
Study design Prospective randomized, blinded, experimental trial.
Animals Twelve healthy horses aged 12 ± 6 years (mean ± SD), weighing 565 ± 20 kg, and with an equal distribution of mares and geldings.
Methods Propofol was administered as an intravenous bolus at one of three randomized doses (0.20, 0.35 and 0.50 mg kg
Results There were no significant propofol dose or temporal effects on heart rate, respiratory rate, vertical head height, or jugular venous blood gases (pH
Conclusions and clinical relevance Intravenous 0.35 mg kg
17.
OBJECTIVE: To determine the effect of induction, a 30-minute, and a 150-minute infusion of propofol on the rate of recovery in cats. STUDY DESIGN: Randomized, cross-over, prospective experimental study. ANIMALS: Six healthy adult spayed female cats (mean 4.3, range 2-7 years old) weighing 3.9 +/- 0.5 kg. METHODS: Cats received each of three treatments: anesthetic induction with propofol (T1), induction followed by a 30-minute infusion (T30) and induction followed by a 150-minute infusion (T150). Propofol infusions were increased or decreased to maintain a sluggish pedal withdrawal reflex. Animals were monitored throughout the anesthetic period and during the recovery. Venous blood samples were collected from a central venous catheter before anesthesia and at 30 minutes for the 30-minute infusion and at 30, 60, 90, 120 and 150 minutes for the 150-minute infusion. The ability of the cat to lift its head, crawl, stand and walk without ataxia was recorded at 5, 10, 20, 40, 60, 80, 120, 160, 180, 210 and 240 minutes after the completion of propofol administration. Data from physiological values were analyzed using either a Student's t-test (30-minute infusion) or an anova (150-minute infusion). A nonparametric Friedman test (and post-hoc Tukey's Studentized range test) was used to determine whether there were differences in the time taken to recover. Results were considered significant if p < 0.05. RESULTS: Time taken to walk without ataxia was significantly greater in T150 (148 +/- 40 minutes) compared with T1 (80 +/- 15 minutes) and T30 (74 +/- 26 minutes). (No other recovery times were significantly different). Anesthesia with propofol was accompanied by a moderate but significant respiratory depression and a decrease in PCV and total protein. CONCLUSIONS AND CLINICAL RELEVANCE: Prolonged anesthesia with propofol in healthy cats may be associated with a delayed recovery. 相似文献
18.
Cardiopulmonary effects of dexmedetomidine and ketamine infusions with either propofol infusion or isoflurane for anesthesia in horses 下载免费PDF全文
Tanya Duke‐Novakovski Carolina Palacios‐Jimenez Tara Wetzel Lisa Rymes Andres F Sanchez‐Teran 《Veterinary anaesthesia and analgesia》2015,42(1):39-49
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia. 相似文献
19.
20.
Barter LS Ilkiw JE Pypendop BH Steffey EP 《American journal of veterinary research》2004,65(6):748-751
OBJECTIVE: To qualitatively and quantitatively evaluate the characteristics of desflurane with regard to the induction of and recovery from anesthesia in cats. ANIMALS: 6 cats. PROCEDURE: Anesthesia was induced and maintained with desflurane in oxygen. Individual minimum alveolar concentration (MAC) values were determined; anesthesia was maintained at 1.25 x MAC for a total anesthesia time (including MAC determination) of 5 hours. Cats were allowed to recover from anesthesia. Induction and recovery periods were video recorded and later scored by use of a grading scale from 0 to 100 (100 being the best outcome). Timing of events was recorded. RESULTS: The MAC of desflurane was 10.27 +/- 1.06%, and mean dose was 5.6 +/- 0.2 MAC-hours. Times to loss of coordination, recumbency, and endotracheal intubation were 1.3 +/- 0.4, 2.3 +/- 0.3, and 6.4 +/- 1.1 minutes, respectively. Median score for quality of anesthetic induction was 93 (range, 91 to 94). Times to first movement, extubation, standing, and ability to jump and land with coordination were 2.8 +/- 1.0, 3.8 +/- 0.5, 14.3 +/- 3.9, and 26.4 +/- 5.1 minutes, respectively. Alveolar washout of desflurane was rapid. Median score for quality of anesthetic recovery was 94 (range, 86 to 96). CONCLUSIONS AND CLINICAL RELEVANCE: Desflurane was associated with rapid induction of and recovery from anesthesia in cats; assessors rated the overall quality of induction and recovery as excellent. Results appear to support the use of desflurane for induction and maintenance of anesthesia in healthy cats. 相似文献