首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
仿照贻贝蛋白高黏附结构,合成邻苯二酚基多糖交联剂(CP)用以增强大豆蛋白胶黏剂的耐水胶接性能,研究CP原料中玉米淀粉与叔丁基二甲基氯硅烷保护的3, 4-二羟基苯甲酸(DHBAT)质量比、CP加入量、胶合板热压工艺(涂胶量、热压温度和热压时间)对大豆蛋白胶黏剂制备胶合板耐水胶接性能的影响规律,表征CP和改性大豆蛋白胶黏剂(SPI-CP)的功能性基团以及胶黏剂热稳定性、结晶区间、断面形貌等解析CP对大豆蛋白胶黏剂的增强机制。试验结果表明:通过4-二甲基氨基-吡啶和N, N-二环己基碳二亚胺催化的酯化反应将邻苯二酚结构成功接枝到玉米淀粉制成CP;CP的最佳配方为m(多糖)∶m(DHBAT)=1∶2,加入量为6%。SPI-CP胶黏剂制备胶合板耐水胶合强度较未改性时提高了64.62%,达1.07 MPa,干状胶合强度提高了154.44%,达2.29 MPa,满足国家标准中的Ⅱ类胶合板要求。这归因于CP中的邻苯二酚结构氧化形成醌类结构与蛋白氨基发生席夫碱反应,形成化学键交联,增强胶黏剂的耐水胶接性能;SCI-CP胶黏剂制备胶合板的优化热压工艺参数为热压温度130℃,热压时间4.5 min(板坯厚4...  相似文献   

2.
通过三羟甲基丙烷三缩水甘油醚(THPTG)交联聚合大豆蛋白降解液制备低黏度大豆蛋白胶黏剂,研究THPTG用量、反应时间、反应温度等工艺参数对大豆蛋白胶黏剂黏度、耐水胶合强度和固化性能的影响,优化大豆蛋白胶黏剂制备工艺条件。结果表明:THPTG用量与反应时间对大豆蛋白胶黏剂黏度、耐水胶合强度均有显著影响,而反应温度仅对黏度影响较大;THPTG用量为9%时,大豆蛋白胶黏剂固化温度为130.20℃,固化反应热达到最大值199.7 J/g。大豆蛋白胶黏剂优化的制备工艺条件为THPTG 9%、反应时间50 min、反应温度70℃,制备的胶黏剂黏度为106 mPa·s,耐水胶合强度达到0.76 MPa,满足GB/T 9846—2015对于Ⅱ类胶合板标准要求。  相似文献   

3.
人造板用大豆蛋白胶黏剂研究进展   总被引:1,自引:0,他引:1  
目前人造板用胶黏剂仍以醛类树脂胶黏剂为主导,存在人居环境甲醛污染和依赖化石资源等问题。随着人们环保意识提高、不可再生资源日益减少以及人造板环保等级要求的不断提升,以生物质资源为原料、水为分散介质的大豆蛋白胶黏剂,作为一种环保、可再生木材胶黏剂显示出巨大的发展潜力,但其耐水胶接性能差等问题仍制约其工业化应用,为木材工业研究热点之一。笔者综述了近年来国内外研究者在提高人造板用大豆蛋白胶黏剂耐水胶接性能方面的研究进展,重点介绍了提高大豆蛋白胶黏剂耐水胶接性能的改性方法,并分析了其改性机制与存在问题,包括蛋白质变性、接枝改性、酶改性、交联改性、大豆多糖改性、仿生改性、纳米材料改性、复合改性等,同时对提高大豆蛋白胶黏剂固体含量、降低黏度、改善抗霉变性能等方面研究进行了综述。探讨了大豆蛋白胶黏剂改性研究方向,并对其科学意义以及应用发展趋势进行了展望,以期为生物质木材胶黏剂的深入研究和在木材工业中的进一步推广应用提供理论与经验指导。  相似文献   

4.
以脱脂豆粕为原料,以环氧类树脂为交联剂,并用聚乙烯亚胺(PEI)改性缩合单宁为增强剂制备大豆蛋白基木材胶黏剂,探究缩合单宁与PEI添加比例对胶合板胶合强度的影响,并对改性后大豆蛋白胶黏剂的微观形貌、热稳定性等进行表征和分析,探讨缩合单宁改性大豆蛋白胶黏剂的增强机理。结果表明:当胶黏剂体系中缩合单宁与PEI的质量比为2∶1时,胶合板的耐水胶合强度为1.06 MPa,与未改性的相比提高了360.8%,满足GB/T 9846—2015Ⅱ类板指标要求。该胶黏剂原料为可再生资源,且具有良好的耐水性,具有工业应用的潜力。  相似文献   

5.
采用聚乙烯醇(PVA)与硅酸钠进行交联处理,以改善硅酸钠胶黏剂的胶接强度和耐水性能。研究了PVA交联反应温度、时间和p H值对硅酸钠胶黏剂胶接强度和耐水性能的影响,并采用傅立叶变换红外光谱(FT-IR)研究交联改性提高胶接强度和耐水性能的机制。结果表明:交联温度为80℃,交联时间为90 min,p H值为9时,PVA交联硅酸钠胶黏剂的胶接强度和耐水性能最佳;FT-IR分析显示PVA和硅酸钠成功发生交联,并促进硅酸钠胶黏剂的固化,从而使胶接强度和耐水性能得到提高。  相似文献   

6.
《林产工业》2021,58(10)
使用聚酰胺多胺-环氧氯丙烷树脂(PAE)溶液、脱脂豆粉和金属氯化物溶液调制无醛大豆基木材胶黏剂,采用傅里叶红外光谱、热重分析、胶合板性能评价等方法,探究金属离子种类、用量及其加入方式对大豆胶黏剂胶合性能的影响。结果表明:金属离子对大豆胶黏剂的胶合性能有着重要影响。添加Mg~(2+)与Fe~(3+)能够提高胶接耐水性能,而添加Na~+、Ca~(2+)、Cu~(2+)、Al~(3+)等金属离子会不同程度降低大豆胶黏剂耐水性能;Mg~(2+)可促进大豆蛋白伸展而且不影响PAE树脂的交联特性,使脱脂豆粉能与PAE树脂产生更好的交联反应,赋予大豆胶黏剂更好的胶接耐水性能;当Mg~(2+)添加量为胶黏剂的1.5 wt%(以1 wt%MgCl_2溶液计)时,压制的胶合板28 h"煮-烘-煮"湿强度达到1.16 MPa,较未添加金属离子大豆胶黏剂的湿强度提高11.5%,然而Mg~(2+)的添加顺序对大豆胶黏剂的胶合性能基本无影响。  相似文献   

7.
李夏  卞丽丽  郭雨  郭媛媛  冯雪  朱丽滨 《森林工程》2011,27(2):35-37,40
采用不同链长的聚醚多元醇与多亚甲基多苯基多异氰酸酯(PAPI)反应,制备了两种不同结构的水性异氰酸酯(P-C、P-D),联剂分别加入到氧化玉米淀粉胶黏剂和脲醛树脂胶黏剂中,以改善胶黏剂的胶接性能。通过粘接强度测试研究不同结构、不同用量的水性异氰酸酯对改性胶黏剂的胶接强度和耐水性的影响。实验结果表明:氧化玉米淀粉和脲醛树脂中加入水性异氰酸酯交联剂制备胶合板,胶接强度及耐水性均有显著提高。氧化玉米淀粉胶黏剂中加入10%的水性异氰酸酯P-D后,所制备胶合板的干态剪切强度可达2.64MPa。脲醛树脂胶黏剂中加入7.5%的P-D后,干态、湿态剪切强度分别为1.24MPa和1.23MPa,甲醛释放量为0.31mg/L,达到E0级标准。  相似文献   

8.
采用水性聚酰胺、乙二醛和异腈酸酯对豆粕蛋白粉进行复合改性制备无甲醛木材胶黏剂,并对复合胶黏剂的黏度、接触角和胶合强度进行了研究.结果表明:复合改性可显著降低豆粕基胶黏剂的黏度和接触角,增强胶黏剂在木材表面的润湿性,改善涂布性能.复合改性最佳pH值在大豆蛋白的等电点附近,当复合改性剂添加量为10%水性聚酰胺/4%异腈酸酯、10%水性聚酰胺/2%乙二醛或10%水性聚酰胺/1%乙二醛/1%异腈酸酯时,胶合强度都达到0.7MPa以上,满足国家Ⅱ类胶合板使用要求.  相似文献   

9.
小球藻蛋白具有可再生、价格低廉等优点,可用于制备蛋白基胶黏剂。采用氢氧化钠(Na OH)、十二烷基硫酸钠(SDS)和三羟甲基丙烷三缩水甘油醚(TTE)改性处理小球藻蛋白后制备胶黏剂。多种方式表征结果显示,改性处理破坏了小球藻蛋白的球形结构,提供了更多的交联位点,从而提高了胶黏剂的胶合强度及耐水性能。在优化工艺参数:双面涂胶量400g/m2,热压压力1.5 MPa、热压温度150℃、热压时间8 min的条件下,制备的三层桉木胶合板的干、湿胶合强度分别为1.78、1.11 MPa,满足GB/T 9846—2015《普通胶合板》中II类胶合板的要求。  相似文献   

10.
以工业碱木质素为原料,通过去甲基化处理提高木质素酚羟基含量,然后在碱性条件下与环氧氯丙烷反应合成去甲基木质素环氧树脂(DLEP),用于改性大豆基胶黏剂。去甲基化结果表明,木质素酚羟基含量由1.97 mmol/g提升至2.98 mmol/g,与未处理木质素相比,提高约51%。环氧值滴定结果显示,DLEP的环氧值达到0.297 mol/100 g,比直接用木质素合成环氧树脂(LEP)的环氧值提高近29%。红外光谱(FT-IR)和扫描电镜(SEM)表征显示,木质素甲氧基脱除生成了新的酚羟基;DLEP成功枝接了环氧基团;DLEP中的环氧基与大豆蛋白中氨基、羧基及羟基反应,形成致密的交联结构。当DLEP质量分数为4%时,胶黏剂的湿胶合强度达1.34 MPa,比纯大豆基胶黏剂高119.6%,满足GB/T 9846—2015中Ⅱ类板的要求。  相似文献   

11.
当前人造板工业化应用的无甲醛添加大豆胶黏剂主要是由环氧氯丙烷-聚酰胺多胺(PAE)树脂改性脱脂豆粉所得,由于交联剂PAE的原料价格昂贵,导致大豆胶黏剂的成本较高。为降低大豆胶黏剂成本以促进其在木材工业中的广泛应用,笔者以价格较低的尿素(U)和乙二醛(G)为原料,优化制备一种无甲醛添加大豆胶黏剂使用的新型交联剂尿素-乙二醛(UG)树脂,通过傅里叶变化红外光谱(FT-IR)表征、热重分析、溶胶-凝胶测试以及胶合性能评价,确定G/U摩尔比对大豆胶黏剂的结构和胶合性能的影响。结果表明:通过乙二醛与尿素反应产物残留醛基与大豆蛋白胺基之间的反应,UG能对脱脂豆粉进行有效交联,从而改善胶黏剂的耐水性能;G/U摩尔比对UG改性剂的结构以及改性大豆胶黏剂的交联密度、胶合性能和热稳定性有着重要影响,以G/U摩尔比为2.0时所合成UG树脂具有最佳胶合性能,但G/U摩尔比为1.6时具有适宜的耐水性能和更低的原料成本。所优化的UG树脂改性大豆胶黏剂,其耐水性能完全满足国家标准GB/T 9846—2015《普通胶合板》中的II类胶合板的要求,而交联剂UG树脂的原料成本比当前工业化大豆胶黏剂所用的PAE树脂降低了43.8%。  相似文献   

12.
对水性高分子-异氰酸酯胶黏剂(API)主剂进行改性,以提高API的耐水、耐热及胶接硬木的性能。首先对比了不同聚乙烯醇及增塑剂对API性能的影响。然后在API主剂中引入耐水、耐热树脂或外交联剂(三聚氰胺甲醛树脂、酚醛树脂、N-羟甲基丙烯酰胺),讨论了它们对API胶接性能的影响。通过试验得出三聚氰胺甲醛树脂改性API的效果最好,并用正交试验设计优化了主剂的配方,最终合成了适合高档硬木胶接用的水性高分子异氰酸酯胶黏剂。在试验过程中采用日本JIS K6806-2003标准,并用柞木代替桦木提高了胶接难度。  相似文献   

13.
为提高大豆蛋白胶黏剂的胶合强度,在离子液体(1-丁基-2,3-二甲基咪唑氯盐[BDMIM][Cl])中,采用原子转移自由基聚合(ATRP)法将甲基丙烯酸缩水甘油酯(GMA)接枝到大豆蛋白分子主链,制备大豆蛋白胶黏剂。对原料大豆蛋白进行预处理,采用红外光谱和核磁氢谱对大豆蛋白结构和大豆蛋白接枝共聚物进行表征,并通过正交试验确定优化工艺条件。结果表明:改性胶黏剂的优化工艺参数为GMA 140 mL,CuBr(溴化亚铜)147.2 mg,油浴时间3 h,在此条件下制备的胶黏剂胶合强度达到1.44 MPa,符合国家标准GB/T 9846—2015Ⅱ类胶合板要求。  相似文献   

14.
以尿素为改性剂,亚硫酸氢钠、过硫酸铵(APS)为引发剂,将甲基丙烯酸缩水甘油酯(GMA)接枝到大豆分离蛋白(SPI)上制备改性大豆蛋白胶黏剂基料.研究了尿素浓度及处理时间、引发剂用量、反应温度、单体用量等因素对改性大豆蛋白胶黏剂基料的黏度和耐水性的影响,确定了最佳的工艺条件.最佳工艺条件为:尿素浓度3 mol/L,预处理时间30 min,反应温度50℃,NaHS03、APS和GMA分别占大豆蛋白的质量分数为5%、10%和84%.合成的基料黏度为59.68(mPa.s),胶膜水溶物含量为44.12%,对桦木的拉伸剪切强度为5.85 MPa,基本满足木材胶黏剂要求.红外光谱证明GMA和SPI发生了接枝反应.  相似文献   

15.
采用酸、碱和酸碱联合3种方式处理脱脂豆粉,制备改性豆胶,并用于压制三层胶合板,以Ⅱ类胶合板的标准检测其耐水胶合强度。结果表明,酸碱处理均能提高改性豆胶的耐水性能,当酸用量为11.9份时,改性豆胶压制的胶合板最高耐水胶合强度为0.48MPa;碱的用量为22.6份时,耐水胶合强度为0.43MPa;酸碱联合改性豆胶的效果优于单独用酸或碱改性,当酸、碱的用量分别为11.9和39.9份时,改性豆胶压制的胶合板最优耐水胶合强度为0.61MPa。红外光谱分析表明,酸碱联合改性豆胶能综合酸、碱单独使大豆蛋白变性的优点,更有利于提高改性豆胶的耐水性。  相似文献   

16.
由于世界范围内石油资源的紧缺和传统木材用胶黏剂引发的环境问题,使得木材胶黏剂工业重新重视研发豆基胶黏剂。笔者以脱脂豆粉为原料,以尿素、戊二醛为改性试剂制备复合改性木材胶黏剂。分别探讨了尿素浓度、反应温度、反应时间以及戊二醛添加量对改性胶黏剂胶合性能及耐水性的影响,并采用FT-IR分析复合改性胶黏剂样品中活性基团的变化,探索耐水胶合强度增强机理。通过试验结果分析,在试验研究范围内较优合成工艺参数为:尿素浓度为2.0M、反应时间1.0h、反应温度40℃、戊二醛添加量为2.0%(以脱脂豆粉质量为基准)。经30℃热水浸泡处理后,胶合强度达到0.85MPa。  相似文献   

17.
采用己二酸(AA)、二乙烯三胺、环氧氯丙烷(ECH)合成聚酰胺多胺环氧氯丙烷树脂(PAE),将其与大豆蛋白按比例混合制备PAE大豆胶黏剂。在合成预聚体(PA)后,通过单因素试验,探究AA与ECH摩尔比、大豆蛋白添加量对胶合板胶合强度的影响,研究了PAE对大豆蛋白的改性作用及胶接机理。结果表明:在胶黏剂合成过程中AA与ECH摩尔比为1:1.0,大豆蛋白添加量为30%,热压温度为120℃、压力1.0 MPa、热压时间6 min条件下,PAE大豆蛋白胶黏剂胶合强度可达1.02 MPa,满足GB/T 9846-2015Ι类板指标要求。  相似文献   

18.
将生物乙醇木质素与自合成的聚酰胺多胺环氧氯丙烷(PAE)树脂进行接枝共聚改性大豆蛋白,制备环保型胶合板用胶黏剂,并通过单因素试验确定了木质素种类、木质素与PAE质量比、木质素与PAE树脂反应时间、大豆蛋白添加量等工艺条件对大豆蛋白胶黏剂胶合强度的影响。结果表明:当选用生物乙醇木质素与PAE进行接枝共聚、木质素与PAE质量配比为1∶4、反应时间为30 min、大豆蛋白添加量为50%(以木质素-PAE总质量而言)时,制得的三层胶合板湿胶合强度(1.03 MPa)可达到GB/T 9846—2015Ι类杨木胶合板的指标要求。  相似文献   

19.
研究利用高反应活性酚化木质素制备高性能酚化木质素-糠醛胶黏剂。木质素酚化后,在756 cm-1和695 cm-1处新增了两个峰,证实了木质素侧链位的羟基和酚环的活性位点发生了取代反应。在糠醛和苯酚的摩尔比为1.4/1,糠醛和木质素的质量比为0.05/1,缩合时间为3.5 h,氢氧化钠的用量为11%条件下,所制备的酚化木质素-糠醛胶黏剂各项性能良好。该胶黏剂的固体含量为56.25%,pH为11.2,黏度为1 525 m Pa·s,游离糠醛含量为0.04%,游离苯酚含量为0.05%,胶合强度为1.67 MPa。采用六亚甲基四胺优化,胶层均匀分布,与木材面紧密结合,有效胶钉较多,改善了胶合强度。该酚化木质素-糠醛胶黏剂与桉木粉复配所得复合腻子,应用于胶合板表面缝隙填充和平整度调控,不含甲醛,与胶合板相容性好,干燥速度快,耐水性好,打磨性好,粘结强度高,为胶合板可直接饰面和提高饰面高光性提供了技术支撑。  相似文献   

20.
以硫酸/磷酸为催化剂和苯酚液化,将大豆粉转化为胶黏剂的制备原料,并制备得到耐水性木材胶黏剂。采用GPC,HPLC,FTIR等手段结合胶合板压制,对豆粉苯酚液化产物及其与甲醛缩聚得到的胶黏剂进行表征。结果表明:以苯酚/豆粉质量比为3/1~2/1、5%硫酸为催化剂下,将豆粉在130~150℃下液化90min,90%以上的豆粉转化成相对分子质量为250~7250的产物,部分苯酚以1,4-取代和1,2-取代方式与豆粉反应形成结合酚;苯酚液化不仅破坏大豆蛋白的紧密球形结构,还使液化豆粉的活性基团增加,由此通过苯酚液化豆粉与甲醛缩聚,制得低游离甲醛释放的、胶接性能满足国家标准要求的Ⅰ类胶黏剂,由此所制备胶合板的28h煮-烘-煮湿强度在1.24~1.81MPa之间,达到耐候胶合板要求;苯酚/豆粉的比例对液化产物以及苯酚液化豆粉-甲醛胶黏剂的许多特性都有不同的影响,其中以苯酚/豆粉比例为3的胶黏剂胶接强度最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号