首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on cotton growth and nitrogen and phosphorus uptake. AMF were a mixture of Glomus viscosum, Glomus mosseae, and Glomus intraradices initially isolated from a Syrian cotton field. Dry biomass was enhanced significantly by AMF and was higher at AMF plus SM treatment compared to control. Cotton plants showed a significant dependency to indigenous AMF, which was 52% in the AMF treatment. Plant concentrations of nitrogen (N)and phosphorus (P) were significantly higher in mycorrhizal than nonmycorrhizal plants. Maximum plant N and P uptake was found in the treatment of AMF inoculation with SM, which was significantly higher by 202% and 397% over control, respectively. Indigenous AMF was successful in colonizing cotton roots and when combined with SM resulted in better plant growth and N and P uptake.  相似文献   

2.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

3.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

4.
A greenhouse experiment was conducted to study the effect of mycorrhizal colonization by Gigaspora margarita, Glomus intraradices, and Acaulospora laevis on nutrient uptake of K, Ca, Mg, Cu, Zn, Fe, and Mn by Astragalus sinicus L. in soils spiked with lanthanum at five rates (0, 1, 5, 10, and 20 mg kg−1). Lanthanum application significantly decreased the concentrations of K, Ca, Mg, Cu, Zn, and Fe in shoots and the concentrations of Cu and Zn in roots. Mycorrhizal treatments markedly improved uptake of nutrients, and these results are important since nutrient deficiency often occurs in contaminated sites.  相似文献   

5.
Effectiveness of arbuscular mycorrhizal fungi (AMF) is crucial for maximum plant growth and acquisition of mineral nutrients under drought. The objective of this research was to determine effects of varied rates of AMF inoculum on plant growth and acquisition of phosphorus (P), zinc (Zn), copper (Cu), and manganese (Mn) by barley (Hordeum vulgare L. cv. SLB‐6) grown with and without drought stress (WS and nonWS). Plants inoculated with four inoculum rates [control (M0), 120 (M1), 240 (M2), and360 (M3) spores per 100 g dry soil] of Glomus mosseae were grown in a low P silty clay (Typic Xerochrept) soil (pH=8.0) mix in a greenhouse for 45 days. Root AMF colonization increased as inoculum rate increased in plants grown with WS and nonWS. Leaf area and shoot and root dry matter (DM) increased as inoculum rate increased up to M2 regardless of soil moisture. Shoot concentrations of P, Cu, and Mn were generally higher for mycorrhizal (AMF) than for nonmycorrhizal (nonAMF) plants grown with both WS and nonWS. Shoot contents of P, Zn, Cu, and Mn were higher for AMF than for nonAMF plants grown with nonWS, and shoot contents of P were higher for AMF than for nonAMF plants with WS. For plants grown with WS and nonWS, contents of P, Zn, Cu, and Mn were generally higher for plants inoculated with M2 compared to other rates of inoculum. The results of this study indicated that plant responses to root colonization with AMF were dependent on AMF rate and soil moisture. Based on enhancements in plant DM and mineral acquisition traits, M2 inoculum was the most effective rate of inoculation for this AMF isolate.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) alter heavy metal acquisition by higher plants and may alter plant response to soil-contaminating heavy metals. Two communities comprised of Glomus intraradices and G. spurcum were investigated for their influence on copper (Cu) and zinc (Zn) resistance of Sorghum bicolor. One community was isolated from a Cu- and Zn-contaminated soil (AMF-C) and one consisted of isolates from non-contaminated soil (AMF-NC). Non-mycorrhizal (NM) sorghum plants were also included. The two community ecotypes differed in their capacity to protect sorghum from Cu and Zn toxicity and exhibited differential metal uptake into hyphae and altered heavy metal uptake by roots and translocation to plant shoots. AMF-C reduced Cu acquisition under elevated Cu conditions, but increased Cu uptake and translocation by sorghum under normal Cu conditions, patterns not exhibited by AMF-NC or NM plants. Hyphae of both fungal ecotypes accumulated high concentrations of Cu under Cu exposure. AMF-C exhibited elevated hyphal Zn accumulation and stimulated Zn uptake and translocation in sorghum plants compared to AMF-NC and NM plants. Differences in metal resistance between fungal treatments and between mycorrhizal and non-mycorrhizal plants were not related to differences in nutrient relations. The enhanced Cu resistance of sorghum and altered patterns of Cu and Zn translocation to shoots facilitated by AMF isolated from the metal-contaminated soil highlight the potential for metal-adapted AMF to increase the phytoremediation potential of mycotrophic plants on metal-contaminated environments.  相似文献   

7.
A field experimentation was conducted during 2009-2011 at CSK Himachal Pradesh Agricultural University, Palampur, India characterized with wet-temperate climate and acid Alfisol soil having medium available phosphorus content. The study aimed at bio-fortification and quality enhancement of okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system through arbuscular mycorrhizal fungi (AMF) (Glomus mosseae) at varying inorganic phosphorus (50, 75, and 100% soil-test-based recommended P dose) and irrigation regimes (40 and 80% available water capacity) in a Himalayan acid Alfisol. The results revealed that AMF and inorganic P significantly enhanced the concentrations and uptake of various primary [nitrogen (N), phosphorus (P), and potassium (K)]; secondary [calcium (Ca)]; and micronutrients [iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), and molybdenum (Mo)] in okra and pea crops. However, effects of varying irrigation regimes were found to be nominal. In okra, AMF inoculation considerably enhanced N, P, K, B, and Mo uptake by 5, 19, 3, 4, and 15%, respectively, over their non-AMF counterparts. Likewise in pea, a higher amount of N (10%), P (26%), K (7%), Fe (7%), Cu (38%), Zn (20%), Mn (4%), B (7%), and Mo (13%) uptake was registered through AMF inoculation over their non-AMF counterparts. Application of soil-test-based P dose from 50% to 100% P also resulted in significant and consistent improvement in N, P, K, B, and Mo uptake both in okra and pea and in Zn, Cu, Mn, and Fe uptake in pea crop. Magnitude of increase in Ca content was to the tune of 13 and 4%, respectively, in okra fruits and pea pods following AMF inoculation, whereas crude protein content enhanced by 4% each in both the crops. Overall, the current study demonstrates the important role of AMF in nutrient enrichment and quality enhancement of okra and pea crops in acid Alfisol, besides considerable reduction in investment on chemical fertilizers. Results of current study suggest that AMF use in Himalayan production systems is of tremendous significance to harvest nutritionally-rich farm produce for Himalayan communities suffering from malnutrition especially anemia and Zn deficiency, and equally to resource-poor Himalayan farmers who ill-afford expensive external inputs.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing plant growth on severely disturbed sites, including those contaminated with heavy metals. However, the generality of detailed patterns observed for their influence on various metals and oxidative‐stress parameters in multiple plant species is not clarified. The goal of this study was to investigate the patterns of metal‐stress alleviation by AMF in four plant species. For this purpose, clover, sunflower, mustard, and phacelia were inoculated with Glomus intraradices and compared to noninoculated plants grown under heavy metal–stressed conditions. The study focused on the effect of AMF inoculation on plant biomass, assimilating pigments, total protein, superoxide dismutase and peroxidase activity, lipid peroxidation and As, Cd, Co, Cu, Fe, Mn, P, Pb, U, and Zn contents. As a result of inoculation very different patterns of variation were obtained for concentrations of elements and for biochemical parameters in plants. The particular effect of AMF inoculation on plants was species‐ and metal‐specific, although there was a general enhancement of plant growth.  相似文献   

9.
Mycorrhizal (+VAM) and nonmycorrhizal (‐VAM) maize (Zea mays L.) plants were grown in sand culture in a greenhouse to determine effects of MES [2(N‐morpholino)‐ethanesulfonic acid] (2.0 mM) and pH (4.0, 5.0, 6.0, and 7.0) on mineral nutrient uptake. Plants were inoculated with the vesicular‐arbuscular mycorrhizal (VAM) isolate Glomus intraradices UT143. Shoot and root dry matter yields were lower in plants grown with MES (+MES) than without MES (‐MES), and decreased as pH increased. Shoot concentrations of N, Ca, Mg, Mn, and Zn were generally higher in +MES than in ‐MES plants, and nutrient contents of most nutrients were generally higher in + MES than in ‐MES plants. Concentrations of N, Ca, Mg, and Mn increased and P, S, and Fe decreased, while contents of all measured nutrients except Mn and Zn decreased as pH increased. Concentrations of Mn, Fe, Zn, and Cu were higher in +VAM than in ‐VAM plants, and contents of P and Ca were higher in ‐VAM than in +VAM plants and Zn content was higher in +VAM than in ‐VAM plants. MES had marked effects on mineral nutrient uptake which should be considered when MES is used to control pH of nutrient solutions for growth of maize.  相似文献   

10.
Mycorrhizal technique is a promising biotechnology in horticultural industry, benefiting plants exposed to diverse abiotic stresses. In this study, the effects of three arbuscular mycorrhizal fungi (AMF), Acaulospora laevis, Glomus mosseae, and Glomus caledonium on plant growth and nutrient uptake of loquat (Eriobotrya japonica Lindl.) seedlings under three water regimes (well watered, water stressed-slight, water stressed-heavy) were investigated. Results showed that inoculated seedlings had higher dry biomass, plant height, and total leaf areas than those un-inoculated ones. AMF effect was the greatest for water stressed-heavy seedlings, followed by water stressed-slight seedlings and well watered seedlings. All AMF species increased the uptake of nitrogen (N) potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), and the mycorrhizal contributions to the nutrient uptake were positively related to that to the biomass. Data suggest that AMF inoculation increases the tolerance of loquat seedlings to drought stress, and the improved nutrient uptake by AMF contributes greatly to the tolerance.  相似文献   

11.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

12.
Vesicular arbuscular mycorrhizal (VAM) fungi symbiosis confers benefits directly to the host plant's growth and yield through acquisition of phosphorus and other macro- and micronutrients, especially from phosphorus (P)–deficient acidic soils. The inoculation of three VAM cultures [viz., local culture (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, Energy Research Institute (TERI), New Delhi (Glomus intraradices)] along with P fertilization in wheat in a P-deficient acidic alfisol improved the root colonization by 16–24% while grain and straw yields increased by 12.6–15.7% and 13.4–15.4%, respectively, over the control. Uptake of nitrogen (N), P, potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) was also improved with VAM inoculation over control, but the magnitude of uptake was significantly greater only in the cases of P, Fe, Zn, and Cu. Inoculation of wheat with three VAM cultures in combination with increasing inorganic P application from 50% to 75% of the recommended P2O5 dose to wheat through the targeted yield concept following the soil-test crop response (STCR) precision model resulted in consistent and significant improvement in grain and straw yield, macronutrient (NPK) uptake, and micronutrient (Fe, Mn, Zn, Cu) uptake in wheat though root colonization did not improve at P2O5 doses beyond 50% of the recommended dose. The VAM cultures alone or in combination with increasing P levels from 50% to 75% P2O5 dose resulted in reduction of diethylenetriaminepentaacetic acid (DTPA)–extractable micronutrient (Fe, Mn, Zn, Cu) contents in P-deficient acidic soil over the control and initial fertility status, although micronutrient contents were relatively greater in VAM-supplied plots alone or in combination with 50% to 75% P2O5 dose over sole application of 100% P2O5 dose, thereby indicating the positive role of VAM in nutrient mobilization and nutrient dynamics in the soil–plant system. There was significant improvement in available N and P status in soil with VAM inoculation coupled with increasing P levels upto 75% P2O5 dose, although the greatest P buildup was obtained with sole application of 100% P2O5 dose. The TERI VAM culture (Glomus intraradices) showed its superiority over the other two cultures (Glomus mosseae) in terms of crop yield and nutrient uptake in wheat though the differences were nonsignificant among the VAM cultures alone or at each P level. Overall, it was inferred that use of VA-mycorrhizal fungi is beneficial under low soil P or in low input (nutrient)–intensive agroecosystems.  相似文献   

13.
The aim of this work was to study the effect of arbuscular mycorrhizal fungus Glomus mosseae on growth and nitrogen (N) metabolism of durum wheat (Tritcum durum) under various P soil contents. The analyses were extended to macro and micronutrient tissue concentrations, nitrate reductase and glutamine synthetase activities, as well as protein, aminoacids, pyridine dinucleotides and adenine nucleotides. Arbuscular mycorrhiza increased wheat growth in soil in which P availability was low and nitrate was the dominant N form. The root colonization occurred at the highest level in plants grown in limiting soil P and was inversely related to soil P content. The micorrhizal wheat plants contained also the highest concentrations of macro (P, K, Ca, N) and micronutrients (Fe, Zn, Mn) as well as free amino acids, protein, NAD, NADP, AMP, ADP, ATP in roots and leaves. In particular, the micronutrient tissue concentrations (Zn, Mn) supported that mycorrhiza actively modulated their uptake limiting interferences and optimizing growth better than the plant roots, like a very efficient “rootstock”. Control plants grown at the highest soil P did not reach the same concentration as the mycorrhizal plants. Nitrate reductase activities in the roots of mycorrhizal plants were higher than in the control ones, while glutamine synthetase activities were highest in the leaves. Protein and amino acids concentrations, as well as AMP, ADP, ATP, NAD(P), and NAD(P)H were also higher than in the control. Among the free amino acids in the roots, the high levels of glutamine, asparagine, arginine, support the view that ammonium was transferred through the arbuscules to the root cells where it was re‐assimilated in the cortical cells, forming high N : C ratio‐amino acids. They were transferred to the leaves where all the other N compounds could be largely synthesized using the carbon skeletons supplied by photosynthesis.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

15.
The effect of indigenous soil and selected mycorrhizal inoculation and phosphorus (P) applications on wheat yield, root infection and nutrient uptake was monitored for two successive years under field conditions. In addition, phosphorus efficiency and inoculation effectiveness (IE) were determined. Wheat (Triticum aestivum L.) plants were used as host plants in a Menzilat soil series (Typic Xerofluvents) in the Mediterranean coastal region of Turkey. Three levels of phosphorus were applied with Glomus mosseae to wheat plants over two successive years. Mycorrhizal inoculation significantly increased root colonization. G. mosseae-inoculated plants in both years exhibited a two-fold higher root colonization than the indigenous mycorrhizal colonization. Compared with non-inoculated plants, mycorrhizal inoculation increased wheat yield for both years. In addition, increasing P fertilizer levels enhanced the wheat grain yield. In both years, the inoculum efficiency (IE) decreased with increasing P level addition. Phosphorus efficiency is higher under low P application than the higher P application. However, with mycorrhizal inoculation P efficiency is higher than the non-inoculated treatment.

The effects of mycorrhizal inoculation on plant nutrient concentrations were determined: mycorrhiza-inoculated plants exhibited a higher zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) nutrients concentration than non-inoculated plants. After two years of field experiments, it is concluded that mycorrhizal inoculation can be used in large arable areas; however, it is also very important to manage the indigenous mycorrhiza of arable land.  相似文献   


16.
Nickel (Ni) is an essential micronutrient for higher plants but is toxic to plants at excess levels. Plant species differ extensively for mineral uptake and accumulation, and these differences often help explain plant tolerances to mineral toxicities/deficiencies. Solution culture experiments were conducted under controlled conditions to determine the effects of Ni on influx into roots (IN) and transport from roots to shoots (TR) of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in white clover (Trifolium repens L.), cabbage (ßrassica oleracea van capitata L.), ryegrass (Lolium perenne L.), and maize (Zea mays L.). Nickel decreased both IN and TR of Zn, Cu, Ca, and Mg, but only TR of Fe and Mn in white clover. Both IN and TR of Cu, Fe, Mn, Mg, and S were markedly decreased by Ni >30 μM in cabbage, whereas IN and TR of P increased with Ni treatment. For ryegrass, TR of Cu, Fe, Mn, Ca, and Mg was decreased, but IN of these elements except Mg was not affected by Ni. The IN and TR of P and S were increased in ryegrass with increasing external Ni levels. Nickel inhibited IN of Cu, Ca, and Mg, and TR of Zn, Cu, Fe, Mn, Ca, and Mg in maize. Plant species differed in response to Ni relative to IN and TR of mineral nutrients. Plant tolerance to Ni toxicity was associated with the influence of Ni on IN and TR of Cu, Fe, and Mn in white clover and cabbage but not in maize and ryegrass.  相似文献   

17.
ABSTRACT

High bicarbonate (HCO3 ?) of irrigation water can be detrimental to plant growth in sustainable horticultural production systems. The ability of arbuscular mycorrhizal fungi (AMF), ZAC-19, (composed of Glomus albidum, Glomus claroideum, and Glomus diaphanum) to enhance tolerance to HCO3 ? was tested on Rosa multiflora cv. Burr. Arbuscular mycorrhizal colonized and non-inoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mM HCO3 ?. Increasing HCO3 ? concentration and associated high pH and electrical conductivity (EC)—reduced plant growth, nutrient uptake, and acid phosphatase activity, while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO3 ?, as indicated by greater growth (leaf, stem, and total plant dry weight, leaf area and leaf area ratio), leaf elemental concentration [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), zinc (Zn), aluminum (Al), boron (B)], leaf chlorophyll concentration, higher mycorrhizal inoculation effect, lower root Fe reductase activity, and generally lower soluble ALP activity. While AMF colonization was reduced by increasing HCO3 ? concentration, colonization still occurred at high HCO3 ? concentration. At 2.5 mM HCO3 ?, AMF plant growth was comparable to plants at 0 mM HCO3 ?, further indicating the beneficial effect of AMF for alleviation of HCO3 ? plant stress.  相似文献   

18.
Two experiments were conducted to determine if improved nutrient uptake increases salinity tolerance of cotton (Gossypium hirsutum L.). A transgenic cotton line (CMO3) with increased salt tolerance and its wild line (SM3) were grown in pots containing substrate (peat:vermiculite = 1:1, v/v) in the first experiment, while cotton (‘SCRC 28’) was cultured in hydroponics with a split-root system in the second experiment. Contents of essential nutrient elements and Na+ in plant tissues, leaf photosynthesis (Pn) and chlorophyll (Chl) concentration and plant biomass were determined after salinity [sodium chloride (NaCl)] treatment in both experiments. In the first experiment, salinity stress with 150 mM NaCl reduced plant biomass and photosynthesis (Pn) of both SM3 and CMO3 compared with their non-stressed controls, but the CMO3 suffered significantly lower reductions than SM3, suggesting an increased salinity tolerance of CMO3 relative to SM3. Total uptake and contents of main nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] in CMO3 were higher than those in SM3. Also, less sodium (Na+) accumulation and lower extreme ratios of Na/N, Na/P, Na/K, Na/Ca, Na/Mg, Na/Fe, Na/Mn, Na/Cu, and Na/Zn were observed in CMO3 than in SM3. Increased salt tolerance in transgenic AhCMO cotton was probably attributed to its superior nutrient uptake compared with SM3. In the second experiment, the non-stressed root half fed with moderate level of nutrient solution and salt-stressed half fed with low level of nutrient solution (CMN/SLN) exhibited higher salinity tolerance than salt-stressed root half fed with moderate level of nutrient solution and non-stressed root half fed with low nutrient solution (CLN/SMN). Plants absorbed more nutrients but less Na+ under CMN/SLN than CLN/SMN. The overall results suggest that improved nutrient uptake played an important role in the enhanced salt tolerance of cotton.  相似文献   

19.
Anadenanthera peregrina is a Brazilian savanna tree species that occurs naturally in arsenic (As)‐contaminated areas, and its As resistance has been associated with arbuscular mycorrhizal–fungi (AMF) symbiosis. A plant's ability to survive in stressful environments is correlated with its nutrition status, which can be affected by As uptake. The present study evaluated the influence of As on the concentrations and distribution of nutrients in the roots and shoots of A. peregrina grown in the absence of AMF. These plants were grown in substrates spiked with 0, 10, 50, and 100 mg As kg–1 for 25 d under greenhouse conditions, and the concentrations of essential macro‐ (P, K, Ca, Mg, N, and S) and micro‐ (Fe, Mn, Cu, Zn, B, and Mo) nutrients in the roots and shoots were then determined. Enhanced As levels increased the concentrations of P, S, and N and decreased Ca, Mg, and Fe. Although the deleterious effects of As on the plants were striking, the internal As levels were high, which indicated some tissue tolerance of A. peregrina.  相似文献   

20.
Lettuce can be associated with arbuscular mycorrhizal fungi (AMF). This symbiosis involves a molecular dialogue between fungus and plant that includes the activation of antioxidant, phenylpropanoid, or carotenoid pathways. The objective of this study was to test if the association of lettuce with AMF benefited plant growth and increased the contents of compounds potentially beneficial for human health. Results showed that AMF improved growth of lettuce, thus producing a dilution effect on the concentrations of some mineral nutrients (e.g., Ca and Mn). However, Cu, Fe, anthocyanins, carotenoids, and, to a lesser extent, phenolics appeared in higher concentrations (on a wet basis) in mycorrhizal than in nonmycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号