首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Amelioration of saline soil is a requisite in order to increase crop productivity. A soil incubation study was performed for 60 days using digestate, humic acid, calcium humate and their combinations to investigate the influence on physical, chemical, microbial and enzyme activities of saline soil. Overall, digestate combined with calcium humate followed by humic acid treatments have shown their potency in decreasing the soil pH, electrical conductivity (EC), and sodium ion (Na+) concentration, and increase in potassium ion (K +), calcium ion (Ca 2+), magnesium ion (Mg 2+), mean weight diameter (MWD), soil enzyme activities, microbial biomass carbon (MBC), MBC: microbial biomass nitrogen (MBN) and soil respiration than control. The digestate, humic acid individually and their amalgamation evidenced greater MBN among all the treatments. The digestate alone efficiently improved the soil properties than humic acid and calcium humate individual groups except for the MWD where it is pronounced more in the latter groups. The greater metabolic quotient (qCO2) was observed in control than organic matter amended treatments indicating the stress conditions. The increase in water-extractable organic matter (WEOM) with minimal aromaticity (specific ultraviolet absorbance at 254 nm-Suva 254) in integrated amendments comprising groups, laid the ground reason to improve the properties of saline soil. Therefore, this study concludes that the fusion of fresh and humified substrates could facilitate reclamation.  相似文献   

2.
To investigate soil changes from forest conversion and regeneration, soil net N mineralization, potential nitrification, microbial biomass N, L‐asparaginase, L‐glutaminase, and other chemical and biological properties were examined in three adjacent stands: mature pure and dense Norway spruce (Picea abies (L.) Karst) (110 yr) (stand I), mature Norway spruce mixed with young beech (Fagus sylvatica) (5 yr) (stand II), and young Norway spruce (16 yr) (stand III). The latter two stands were converted or regenerated from the mature Norway spruce stand as former. The studied soils were characterized as having a very low pH value (2.9 – 3.5 in 0.01 M CaCl2), a high total N content (1.06 – 1.94 %), a high metabolic quotient (qCO2) (6.7 – 16.9 g CO2 kg–1 h–1), a low microbial biomass N (1.1 – 3.3 % of total N, except LOf1 at stand III), and a relatively high net N mineralization (175 – 1213 mg N kg–1 in LOf1 and Of2, 4 weeks incubation). In the converted forest (stand II), C : N ratio and qCO2 values in the LOf1 layer decreased significantly, and base saturation and exchangeable Ca showed a somewhat increment in mineral soil. In the regenerated forest (stand III), the total N storage in the surface layers decreased by 30 %. The surface organic layers (LOf1, Of2) possessed a very high net N mineralization (1.5 – 3 times higher than those in other two stands), high microbial biomass (C, N), and high basal respiration and qCO2 values. Meanwhile, in the Oh layer, the base saturation and the exchangeable Ca decreased. All studied substrates showed little net nitrification after the first period of incubation (2 weeks). In the later period of incubation (7 – 11 weeks), a considerable amount of NO3‐N accumulated (20 – 100 % of total cumulative mineral N) in the soils from the two pure spruce stands (I, III). In contrast, there was almost no net NO3‐N accumulation in the soils from the converted mixed stand (II) indicating that there was a difference in microorganisms in the two types of forest ecosystems. Soil microbial biomass N, mineral N, net N mineralization, L‐asparaginase, and L‐glutaminase were correlated and associated with forest management.  相似文献   

3.
The objective of this study was to determine the total organic carbon (TOC), basal respiration (BR), microbial biomass carbon (MBC), the metabolic quotient (qCO2), and ratio of microbial biomass carbon to total organic carbon (MBC/TOC) at different soil depths in three agroecosystems in Fundo Zamorano Independencia, Cojedes State, Venezuela. The types of agroecosystems studied were short-cycle corn and bean cropland, pastureland, and gallery forest, which was used as the control soil. The BR was determined by measuring the carbon dioxide released in a closed system, and the MBC was analyzed by applying the substrate-induced respiration method. The BR and the MBC varied depending on depth and transect position, decreasing between 18% and 38% at a depth of >10 cm with respect to the measurements taken between 0 and 10 cm. Significantly greater BR and MBC values were found at the middle transect position, where the soils with the greatest moisture content are located. No significant differences for BR, MBC, and qCO2 values were found among the agroecosystems. This was due to the high spatial variability of the physical and chemical properties of the soils in the study site. However, with the application of the Kruskal–Wallis test, significant differences for the TOC and MBC/TOC values were found among the agroecosystems. These results highlight the importance of the type of plant cover over soil in different agroecosystems, mainly on pastureland, which maintains the potential of the inocular mycorrhizal of the soil.  相似文献   

4.
冀北辽河源油松天然林土壤微生物碳代谢特征研究   总被引:3,自引:0,他引:3  
立天宇  康峰峰  韩海荣  高晶  宋小帅 《土壤》2015,47(3):550-557
本文以冀北辽河源地区不同林龄油松天然林为研究对象,研究其土壤微生物生物量碳、微生物呼吸及微生物代谢熵随油松林龄的变化趋势。结果表明:随着油松天然林林龄的增加,土壤微生物生物量碳逐渐增加;而土壤微生物呼吸则呈现出先减小后增加的趋势;微生物代谢熵表现为随油松林林龄的增加而降低。相关性分析表明,土壤微生物生物量碳、微生物呼吸分别与微生物代谢熵之间呈现高度的极显著线性负相关。微生物生物量碳与微生物呼吸呈极显著正相关,但线性相关程度较弱。土壤微生物生物量碳和微生物呼吸与土壤温度和含水量均呈极显著正相关,而土壤微生物代谢熵则与土壤温度、土壤含水量呈极显著负相关。上述结果表明,在冀北辽河源地区,土壤微生物生物量碳、微生物呼吸、微生物代谢熵与油松天然林林龄密切相关。随着油松天然林林龄的增加,其土壤微生物活性增强,碳代谢效率增加,土壤质量及可持续利用潜力更高,土壤生态体系更加成熟。  相似文献   

5.
通过田间试验,研究了施用不同有机物料对渭北旱塬耕地土壤微生物学特性及土壤肥力的影响。结果表明,化肥与不同有机物料配合施用,土壤微生物学特性[微生物量碳(MBC)、微生物量氮(MBN)、脲酶、碱性磷酸酶]以及部分土壤养分状况(全氮、速效磷、速效钾、阳离子交换量)比单施化肥处理均得到进一步改善。化肥配施秸秆堆肥处理效果最明显,其中微生物量碳增加了41.96%,微生物量氮增加了54.55%,脲酶活性增加了19.71%,碱性磷酸酶活性增加了7.35%,速效磷增加了63.12%;而且土壤微生物量碳、氮与速效磷、阳离子交换量呈显著正相关,微生物商(qMB)、脲酶活性、碱性磷酸酶活性与全氮、速效氮、速效钾含量呈显著相关;同时SMBC、SMBN、qMB等与作物产量密切相关(相关系数分别为0.85,0.74,0.82)。因此,化肥配施秸秆堆肥处理在渭北旱地雨热条件下对于全面提升土壤质量具有重要的意义;同时该区域土壤中微生物量碳氮与土壤养分状况、作物产量具有很好的一致性,可以表征土壤肥力状况及生产力水平。  相似文献   

6.
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0--60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.05), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.  相似文献   

7.
The objective of this study was to evaluate the effect of Conilon coffee (Coffea canephora) cultivated under conventional and organic management systems on the chemical and microbiological characteristics of the soil, as compared to an Atlantic forest. Chemical soil properties, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial activity (MA), and metabolic quotient (qCO2) were determined at depths of 0–10 cm and 10–20 cm in two seasons (summer and winter). Although microbiological attributes varied according to the season and soil depth, MBC provided 54.15% of relative contribution to distinguish the treatments, followed by MBN and MA. Results indicate that the cultivation of coffee under organic management is more sustainable than under conventional system. Carbon from microbial biomass was the most important soil microbiological attribute in the clustering of the different management methods. Atlantic forest soil followed by organic coffee cultivation soil showed the best soil-quality indices.  相似文献   

8.
ABSTRACT

This study aims to characterize soil chemical properties and microbial biomass, greenhouse gas production, and organic matter dynamics in upland rice field as affected by the long-term fertilizer managements in Uganda. Soil total C (TC) and N (TN) contents were in the relatively smaller range under different fertilizer treatments, even after 20 crop seasons. However, available phosphate contents showed positive correlation with average yield of upland rice. Incubation experiments were conducted under aerobic or under flooding conditions to measure CO2, methane, and nitrous oxide productions. After the incubation, soil samples were extracted to quantify nitrification rate for aerobic condition and ammonification rate for flooding condition. Soil microbial biomass carbon (MBC) and nitrogen were measured. Stable isotope ratio of 13C and 15N were also determined for the soil samples. CO2 production potential under aerobic condition was higher than the flooding condition. The qCO2 (CO2/MBC) in the treatment applied with compost tended to be higher than the other treatments. Positive correlation between nitrous oxide production and nitrification was found. The delta 13C values of the soil samples indicated that the effect of C4 plants before rice cultivation still remained, while the contribution of biological N2 fixation was little according to delta 15N values. These results indicate that soil microbial biomass in upland rice field of the long-term fertilizer experiment in Uganda was characterized with higher qCO2. Greenhouse gas production was affected by fertilizer management, while soil organic C before the long-term experiment still remained in the experiment.  相似文献   

9.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon(C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitati...  相似文献   

10.
A long-term experiment (LTE) on a rice-wheat system was initiated in 1963 at the Kyushu National Agricultural Experiment Station, in Fukuoka, Japan, to determine the effects of continuous application of rye grass/wheat straw, rice straw and rice straw compost, alone or in combination with inorganic N on crop yields. Increase in rice yields and enhancement of total soil C and N contents with the application of organic residues in this LTE have been reported earlier. However, evaluation of the changes in the soil microbiological properties and the decomposable C fraction of soil organic matter that is needed for soil quality assessment is still lacking. Soil samples were collected after rice harvest in 2003 from the organic residue treatments and unfertilized control, air-dried and incubated for 1 month under aerobic [50% water-filled pore space (WFPS)] and flooded conditions prior to the analysis of the amount of microbial biomass C (MBC), soil respiration and the amount of potential mineralizable N (PMN). The contents of total C (TC), total N (TN), organic C (OC), hot water-extractable C (HWEC) and permanganate-oxidizable C (POC) were determined from air-dried soils. Organic residue incorporation brought about significant increases in the contents of TC, TN, OC, POC, HWEC and PMN. The largest accumulation of total C (23%) and N (72%) in the soil was from rice straw compost, compared with that from rice straw (C, 7% and N, 33%) and rye grass/wheat straw (C, 9% and N, 29%). Incorporation of rice straw compost also increased the amount of MBC under both aerobic and flooded conditions and basal soil respiration under aerobic conditions only. An efficient utilization of C by microorganisms was indicated by a significantly lower metabolic quotient (qCO2) in the composted and uncomposted rice straw treatments compared with the control in the “-” N treatment under aerobic conditions. Similarly, the flush of CO2 after rewetting of dry soil per unit of HWEC was lower in the organic matter treatments, indicating a more efficient C utilization and lower C losses per unit of available C. The content of HWEC was significantly correlated with the basal soil respiration (at 50% WFPS), the amounts of MBC, PMN and with the increase in the content of soil organic C in the residuetreated soils. In the treatments without inorganic N fertilizer, grain yield was significantly correlated with the amounts of total organic C, HWEC, MBC (at 50% WFPS), basal soil respiration (at 50% WFPS) and the amount of PMN.  相似文献   

11.
To assess changes in organic carbon pools, an incubation experiment was conducted under different temperatures and field moisture capacity (FMC) on a brown loam soil from three tillage practices used for 12 years: no‐till (NT), subsoiling (ST) and conventional tillage (CT). Total microbial respiration was measured for incubated soil with and without the input of straw. Results indicated that soil organic carbon (SOC) and microbial biomass carbon (MBC) under ST, NT and CT was higher in soil with straw input than that without, while the microbial quotient (MQ or MBC: SOC) and metabolic quotient (qCO2) content under CT followed the opposite trend. Lower temperature, lower moisture and with straw input contributed to the increases in SOC concentration, especially under NT and ST systems. The SOC concentrations under ST, with temperatures of 30 and 35°C after incubation at 55% FMC, were greater than those under CT by 28.4% and 30.6%, respectively. The increase in MBC was highest at 35°C for 55%, 65% and 75% FMC; in soil under ST, MBC was greater than that under CT by 199.3%, 50.7% and 23.8%, respectively. At 30°C, the lower qCO2 was obtained in soil incubated under NT and ST. The highest MQ among three tillage practices was measured under ST at 55% FMC, NT at 65% FMC and CT at 75% FMC with straw input. These data indicate the benefits of enhancing the MQ; the low FMC was beneficial to ST treatment. Under higher temperature and drought stress conditions, the adaptive capacity of ST and NT is better than that of CT.  相似文献   

12.
The economic benefits of organic agriculture and its wide adoption are well documented, but the impact of that practice on soil C dynamics in irrigated croplands of semi‐arid regions is less well understood. In manure‐based organic production systems, land applications of animal wastes not only provide nutrients but could also contribute to soil carbon sequestration. A study was conducted in irrigated cotton (Gossypium arboreum L) agro‐ecosystems of New Mexico (USA) under conventional (CONV; 100 kg N/ha as urea and NH4NO3) and organic farming practices (OF for 3–9 yr; 50 Mg dry manure/ha) to assess the effect of OF on soil C stocks (organic, inorganic) and biochemical indices [microbial biomass C (MBC); respiration; metabolic quotient (qCO2)]. In the plough layer (0–30 cm), soil organic carbon (SOC) stocks tended to be higher (although not statistically) under OF (35.9 Mg C/ha) than CONV (33.5 Mg C/ha). However, when the entire 100‐cm soil profile was considered, the total SOC under CONV exceeded that under OF by 39.8 Mg C/ha, but this may be influenced by other factors. Accounting for 52% of the total C stock, inorganic C was significantly higher under CONV than OF and was positively correlated with soil respiration and the H/C ratio of soil organic matter. While OF duration had no consistent effect on soil biochemical properties, MBC was significantly higher (1.5 times) and the qCO2 (3–6 times) was lower in the organically fertilized soils than under CONV. These results suggest the development, under OF, of a soil microbial community that is larger and processes added C substrates more efficiently compared with the community present in CONV practices.  相似文献   

13.
以堆肥后的菜籽饼为有机肥,通过水稻田间试验,研究了有机肥对土壤有机质(OM)、pH、微生物量碳、氮(MBC、MBN)、3种酶活性(酸性磷酸酶,ACP、脲酶,UA、脱氢酶,DH)及土壤Cd的赋存形态的影响,利用通径分析研究了有机肥对土壤Cd赋存形态的影响途径和机制。结果表明:(1)施用有机肥能显著提高土壤OM含量和土壤pH,显著增加土壤中可还原态Cd(Red-Cd)和可氧化态Cd(Oxi-Cd)含量,降低土壤酸可提取态Cd(Aci-Cd)含量。(2)施用有机肥能不同程度增加土壤ACP、UA及DH活性,提高土壤MBC和MBN含量。(3)通径分析结果表明,施用有机肥降低土壤Aci-Cd含量主要是通过提高土壤OM含量、DH活性和MBC含量这3个途径完成。土壤OM含量、土壤DH活性和MBC含量的决策系数分别为0.846,0.257,-0.276,均达到显著水平,是有机肥施用下影响土壤Aci-Cd含量的主控因子。  相似文献   

14.
Soil biochemical properties are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined on fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or incubation of rewetted air-dried soil samples on microbial biomass carbon (MBC), basal soil respiration (BSR), qCO2 and water soluble carbon (WSC), in soils from different locations, with different degradation status and sampling seasons, and (ii) assess if air-drying or incubation of rewetted air-dried soil samples is an accurate sample storage and pre-treatment procedure for these soil properties in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that air-drying does not have the same effects on MBC, BSR, qCO2 and WSC depending on the geographical situation and sampling date. It seems that the warmest and driest place and season show less variation when using air-dried soil samples, with values representative of those obtained under field-moist conditions. Short incubations (4, 8 and 12 days at 23 °C) provoked a general decrease in all properties, probably due to labile organic compounds depletion. Hence, air-dried soils can be used as part of soil quality analysis to estimate these biochemical properties in summer time in the semiarid region of South-East Spain, because they have not suffered severe affections. Moreover, MBC could also be determined using air-dried soil in the driest zones during all year. In contrast, estimations with incubated soil samples are not, in any case, representative of field-moist soil values.  相似文献   

15.
《Pedobiologia》2014,57(4-6):293-301
Statistical approaches, especially multivariate techniques such as hierarchical partitioning analysis (HP) and redundancy analysis (RDA), can be used to select appropriate variables for soil quality assessment. HP is usually applied to ecological data from plants and animals, but has not been applied to chemical and microbial properties such as those used as indicators of soil quality. Our aim was to show how these methods can be employed to find soil quality indicators, using soil microbiological, chemical and physical data to compare two forest types (native and reforested Brazilian Araucaria forests) in two locations in Southeast Brazil. We used RDA to investigate relationships among variables. Additionally, we quantified the independent effects of predictor variables: location, forest type, two specific seasons and some soil properties and used HP to examine how these environmental variables interact to influence soil microbial and chemical attributes. RDA showed that acid phosphatase and dehydrogenase activity, NO2 oxidizer numbers, basal respiration, metabolic quotient, pH, P and sand content were positive and significantly correlated with the native Araucaria forest, whereas arylsulphatase activity, denitrifier numbers, microbial biomass carbon, microbial quotient, TOC, S and clay levels were positively correlated with the reforested Araucaria. These preliminary results suggest that these variables are the best indicators of soil quality for Araucaria forests. However, HP, used as a complementary tool, showed that only dehydrogenase activity, pH and S variations were due more to forest type than to physical and chemical soil properties, and were resistant to the variation in the two seasons. Overall, our results indicated that dehydrogenase activity, pH and S are potential indicators that can be used to assess or monitor soil health in Araucaria forests. In conclusion, we demonstrated the usefulness of HP to find soil quality indicators. Similarly, other statistical methods, as RDA, could complement HP and increase the reliability of studies that consider simultaneous variables in soil science.  相似文献   

16.
Abstract

Changes produced in the microbiological properties of earthworm Lumbricus terrestris casts and surrounding soil by the addition of various organic wastes such as wheat straw (WS), tea production waste (TEW), tobacco production waste (TOW), cow manure (CM), and hazelnut husk (HH) were evaluated in an incubation experiment. Twenty‐one days after organic waste treatment, analyses of microbial biomass (Cmic), basal soil respiration (BSR), metabolic quotient (qCO2), and enzyme activities (dehydrogenase, catalase, β‐glucosidase, urease, alkaline phosphatase, and arylsulphatase) were carried out on collected cast and soil samples. Addition of organic wastes to the soil increased values of Cmic, BSR, and enzyme activities in soil and earthworm casts, indicating activation by microorganisms. Except for catalase activity, these values of microbiological parameters in casts were higher than in surrounding soil at all waste treatments and control. The addition of organic wastes caused a rapid and significant increase in organic carbon, total nitrogen, and microbiological properties in both soils; this increase was especially noticeable in soils treated with TEW.  相似文献   

17.
Forest soils can be sources or sinks of greenhouse gases (GHGs) depending on soil attributes that affect biomass and activity of soil micro-organisms involved in GHGs fluxes. In this work, we tested the hypothesis that soil physical, chemical and microbiological attributes, under different forests ecosystems, affect the soil GHGs [nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4)] fluxes. The study was carried out in two locations in southern Brazil in 2019, with three experimental plots of 900 m2 in native forests of the Atlantic Forest biome and in loblolly pine (Pinus taeda) plantations. Air samples released from the soil surface were analysed for concentration and flux of CO2, N2O and CH4. Soil samples were analysed for chemical attributes, density (Ds), soil microporosity (MiPs), soil macroporosity (MaPs), total porosity (TP), water-filled pore space (WFPS), microbial biomass carbon (MB-C), basal respiration (BR), microbial (qMic) and metabolic (qCO2) quotient and activities of soil urease and β-glucosidase enzymes. The seasons influenced the CO2 and N2O emissions, probably because of the changes in seasonal conditions. However, native forests consumed more CH4 than pine plantations. Meanwhile, the native forests presented soils with lower Ds (average 21.5% lower), more TP (average 12.5% higher) and more moisture (average 33% higher), which improved the microbiological attributes of the soil (20% to 60% more MB-C, 67% higher urease activity and 30% higher β-glucosidase activity) compared with pine plantations. Native forests contributed more intensely to CH4 consumption than pine plantations because they present better physical, chemical and microbiological soil conditions. Therefore, it is possible that forestry practices that improve soil physical attributes are likely to contribute to increase CH4 consumption, and to reduce GHGs emissions in forest ecosystems.  相似文献   

18.
Caragana korshinskii K. is a shrub species which is adapted to arid and semi-arid environments and plays an important role in soil protection. The objective of this study was to determine the influence of this shrub plantation on the soil ecosystem functions driven by microorganisms in the long-term. The changes in the size and activity of soil microbial biomass and the relationship between soil microbial biomass and chemical properties were investigated under shrub plantations aged 6, 18 and 26 years. The results showed that the pH value in the soil decreased gradually, while soil organic carbon (OC) and total nitrogen (TN) significantly increased with the age of C. korshinskii. Although microbial biomass carbon (MBC) and MBC/OC ratio gradually increased, the ratio of basal respiration to MBC (qCO2) decreased with the age of C. korshinskii. The microbial biomass nitrogen (MBN) and MBC had a positive relationship with soil TN and OC, respectively. The flux of CO2 decreased with the age of C. korshinskii which had a significant negative relationship with soil OC, TN, MBN and MBC. The results indicate that C. korshinskii plantations may help to improve microbially driven ecosystem functioning through long-term creation of resource-island.  相似文献   

19.
《Applied soil ecology》2010,46(3):254-261
Soil microorganisms mediate many important biological processes for sustainable agriculture. The effect of a polymer-coated controlled-release urea (CRU, ESN®) on soil microbial communities was studied at six sites across western Canada from 2004 to 2006. Fertilizer treatments were CRU, urea and an unfertilized control. Timing of fertilizer application (fall vs. spring) was studied in 9 of the 18 site-years (combinations of sites and years). Wheat (Triticum aestivum L.), canola (Brassica napus L.) and barley (Hordeum vulgare L.) were grown in rotation at five sites, and silage corn (Zea mays L.) was grown in all 3 years at one site, under conventional tillage (CT) or zero tillage (ZT). The fertilizers were side-banded at 50–60 kg N ha−1 for wheat, barley and canola, and broadcast at 150 kg N ha−1 for corn. Microbial biomass C (MBC) and bacterial functional diversity and community-level physiological profiles (CLPPs) were determined at about the flowering stage of each crop. In situ CO2 evolution (soil respiration) was measured, and microbial metabolic quotient (qCO2) determined, at one site in 2 years. In the rhizosphere, fertilizer effects on MBC and functional diversity were observed in 1 and 5 of 18 site-years, respectively; and in bulk soil in 4 site-years each. These effects were usually positive relative to the control. CRU increased MBC or functional diversity more than urea in 3 site-years, but the opposite was observed in 1 site-year. Time of fertilizer application affected MBC in 1, and functional diversity in 2, of 9 site-years in the rhizosphere, and no effects were observed in bulk soil. Fall-applied fertilizer increased MBC more than spring-applied fertilizer, but the opposite was observed for functional diversity. Tillage affected MBC and functional diversity in 4 and 5 of 18 site-years, respectively, in the rhizosphere, and in 3 and 4 site-years in bulk soil. Tillage effects were usually in favour of ZT. There were no treatment effects on CO2 evolution, but an interactive effect of fertilizer and tillage on qCO2 was observed in 1 year when qCO2 in the control treatment was greater than that in either fertilizer treatment under CT, but urea increased qCO2 relative to the control under ZT. Shifts in CLPPs were sometimes observed where the treatment effects described above were not significant. Notwithstanding the limitations of culture-dependent CLPPs, most fertilizer effects on soil microbiological properties were not statistically significant. Therefore, these fertilizers probably did not adversely affect most soil biological processes.  相似文献   

20.
Recent studies have suggested that the organic matter contents of undisturbed soils (under natural vegetation) are in equilibrium with biological and biochemical properties. Accordingly, we hypothesised that such equilibria should be disrupted when soils are subjected to disturbance or stress, and that measurement of this disruption can be expressed mathematically and used as a soil quality index. In this study, we evaluated these hypotheses in soils from the H.J. Andrews Experimental Forest in Oregon. Both O and A horizons were sampled from nine sites in Spring 2005 and Fall 2006. Soil samples were analyzed for enzyme activities (phosphatase, β-glucosidase, laccase, N-acetyl-glucosaminidase, protease and urease), and other biological and chemical properties including N-mineralization, respiration, microbial biomass C (MBC), soil organic carbon (SOC) and total nitrogen content. In addition, soil samples from one old-growth site were manipulated in the laboratory to either simulate chemical stresses (Cu addition or pH alteration) or physical disturbances (wet-dry or freeze-thaw cycles). The results showed variation in biological and biochemical soil properties that were closely correlated with SOC. Multiple regression analysis of SOC levels against all soil properties showed that a model containing only MBC and phosphatase activity could account for 97% of the SOC variation among the sites. The model fit was independent of spatial and temporal variations because covariates such as site, stand age, sampling date, and soil horizon were found to be not statistically significant. Although the application of stress/disturbance treatments inconsistently affected most of the individual biochemical properties, in contrast, the ratio of soil C predicted by the model (Cp), and soil C measured (Cm) was consistently reduced in soils submitted to at least one level of stress and disturbance treatments. In addition, Cp/Cm was more affected in soils submitted to wet-dry cycles and Cu contamination than to freeze-thaw cycles or shifts in soil pH. Our results confirm previous evidence of a biochemical balance in high quality undisturbed soils, and that this balance is disrupted when the soil is submitted to disturbances or placed under stress conditions. The Cp/Cm ratio provides a simple reference value against which the degrading effects of pollutants or management practices on soil quality can be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号