首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

2.
To develop phosphorus-based agronomic application rates of phytase-diet, bisulfate-amended Delmarva poultry litter in conservation tillage systems, nutrient release dynamics of the organic fertilizer under local weather conditions were investigated. Delmarva poultry litter was placed in polyvinyl chloride columns to a depth of 5 cm and weathered in the field for 570 days. Leachate from the columns was collected and measured for concentrations of various nutrients. Cumulative release of the nutrients as a function of weathering time was modeled, and the nutrient supply capacity was determined. Poultry litter leachate contained high contents of dissolved organic carbon (15–31,500 mg L?1), nitrogen (N 5–7,070 mg L?1), phosphorus (P 5–230 mg L?1), potassium (K+ 2–7,140 mg L?1), and other nutrients. Release of most nutrients occurred principally in the first 100 days, but for P and calcium (Ca2+), it would last for years. The release kinetics of N followed a logarithm equation, while P and K demonstrated a sigmoidal logistic pattern. The nutrient supply capacity of surface-applied Delmarva poultry litter was predicted at 10.9 kg N Mg?1, 6.5 kg P Mg?1, 34.7 kg K+ Mg?1, 5.4 kg Ca2+ Mg?1, and 14.0 kg SO 4 2? Mg?1. The results suggest that Delmarva poultry litter should be applied to conservation tillage systems at 6.6 Mg ha?1 that would furnish 25 kg P ha?1 and 63 kg N ha?1 to seasonal crops. In repeated annual applications, the rate should be reduced to 5.2 Mg ha?1, with supplemental N fertilization to meet crop N requirements.  相似文献   

3.
In the greenhouse and container nursery production industry there is potential for runoff of nitrogen (N) and phosphorus (P), which may contaminate surface and groundwater. Since the 1950s constructed wetlands (CWs), as a simple, low-technology method, have been shown to effectively treat agricultural, industrial, and municipal wastewater. We investigated the N and P attenuating potential of three floating hydrophytes planted in a laboratory-scale subsurface flow (SSF) CW system. Over an 8-week period plants were supplied with N and P (0.39 to 36.81 mg·L?1 N and 0.07 to 6.77 mg·L?1 P) that spanned the rates detected in nursery runoff between the discharge and inflow locations of a commercial nursery currently employing CWs. Whole plant dry weight was positively correlated with N and P supplied. Highest N recovery rates were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce (Pistia stratiotes L.). P recovery rates were similar for water hyacinth, water lettuce, and dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.). These floating hydrophytes can be cultivated in a SSF CW to remediate runoff losses of N and P. The possibility exists for integrating them into a polycultural remediation system that includes emergent aquatic macrophytes for processing and polishing nursery/greenhouse wastewater.  相似文献   

4.
Manganese (Mn) deficiency in soybean has occurred mainly in soils with surface dolomite lime application, which increases pH and the magnesium (Mg) concentration in the surface layer. The objective of this study was to investigate the influence of Mg on the Mn uptake in four soybean cultivars with different nutritional requirements. The experiment was conducted under greenhouse conditions in a completely randomized design, in 4 × 2 × 4 factorial scheme [four soybean cultivars, two Mg rates (0.1 and 1.0 mmol L?1) and four Mn rates (0.0, 1.0, 2.0, and 5.0 µmol L?1)], with four replicates. The cultivars used in the experiment were: IAC 17 and FT Estrela (for soils fertility or high nutritional demand) and IAC 15–1 and DM Nobre (for soils partially corrected or medium nutritional demand). The root dry weight (RDW), shoot dry weight (SDW), SDW/RDW ratio, chlorophyll content, seed yield and foliar concentrations of nitrogen (N), phosphorus (P), potassium (K), Mg, calcium (Ca), iron (Fe), Mn, and zinc (Zn) were determined. The application of the highest Mg rate increased seed yield. This was also observed with a Mn rate up to 3.0 μmol L?1. There was an interaction of Mg and Mn in the plant, and it was found that the IAC 17 cultivar was the most sensitive to Mn, while FT Estrela had the lowest performance. N, P, K, and Zn concentrations were significantly influenced by Mn rates. The Mg and Mn rates had a significant effect on Mg foliar concentrations. The rate of 1.0 mmol L?1 of Mg provided the lowest levels of nutrients to the plant and increased SDW and seed yield, regardless of the nutritional requirement of each cultivar.  相似文献   

5.
Four okra cultivars [Abelmoschus esculentus (L.) Moench] were cultivated for two growing periods at nitrogen (N) application rates of 150, 300 and 450 mg N L?1. There was no effect of N on pod size (length and diameter) or on the number of seeds per pod and seed size (mean 1000 seed weight), all these characteristics of which related to the genotype. High N application (450 mg N L?1), increased the seed yield of the cultivar with the lowest flower induction (Boyiatiou), but only in experiment 2. In Veloudo, seed yield was highest at 300 mg N L?1, whereas in Pylaias and Clemson 450 mg N L?1 reduced seed yield. In all cultivars, seeds produced at an N rate of 450 mg N L?1 exhibited a significantly higher percent germination N, possibly by reducing the incidence of seed hardness.  相似文献   

6.
Abstract

Nitrate (NO3 ?) meters have been used effectively for crop nitrogen (N) management in many crops, including corn and cabbage. The use of a Cardy NO3 ? meter to assess the N status of the carrot crop could improve the utilization of applied N, but critical NO3‐N concentrations are required. Two carrot cultivars were grown on mineral and organic soils over 3 years at five N application rates to establish critical sap and soil NO3‐N concentrations and to identify the effects of soil type and cultivar. Although a yield response to N application occurred on mineral soil in 2 of 3 years, consistent critical sap NO3‐N concentrations could not be established because of variability among years, cultivars, and soil types. Critical soil nitrate concentrations were highly variable, but values of 31 to 36 mg · L?1 NO3‐N could be established for the early sampling date to 30 cm deep. Sap NO3‐N concentrations cannot be used alone for N analysis of carrots, but early‐season soil NO3‐N assessment could be useful in adjusting N‐fertilization practices.  相似文献   

7.
Nitrogen (N) and phosphorus (P) deficiency is one of the important causes of degradation of cultivated pasture under tropical conditions. The aim of this study was to evaluate phosphate rates and sources, and N rates on the concentration and uptake of N and P, and shoot dry mass (SDM) yield of Megathyrsus maximum grass cv Mombasa in an Ultisol. The trial was carried out in a greenhouse in pots with 4.0 dm?3 of soil. The experiment was arranged in a completely randomized design with four replicates. The 3 × 3 × 3 factorial treatments consisted of phosphorus sources [reactive rock phosphate from Morocco (RPM), reactive rock phosphate from Algeria (RPA) and triple superphosphate (TSP)], three phosphorus rates (0, 150, and 300 mg kg?1), and three N rates (0, 250, and 500 mg kg?1). The SDM and tillering of Mombasa grass were significantly influenced with the TSP, RPM, and RPA application associated with N fertilization. The RPM, RPA, and TSP met the nutritional demands of Mombasa grass. The three P sources showed the same effect on the total N uptake by Mombasa grass. The P use efficiency (PUE) when fertilizer-P sources were added alone by Mombasa grass was <12% of the added P, and PUE decreased as follows: TSP > RPA > RPM. When P and N-fertilizer were added together, the fertilizer-N use efficiency (NUE) was 62%. The reactive phosphate (RPM and RPA) is an efficient P sources for Mombasa grass, but requiring higher rate of application compared to TSP source.  相似文献   

8.
Abstract

Ammonium polyphosphate fertilizers provide an analytical challenge because they contain mixed phosphorus (P) species in solution as orthophosphate, pyrophosphate, and tripolyphosphate species. The conventional technique for the determination of polyphosphate concentration in solution is measuring the difference between total digested P and initial orthophosphate with colorimetry. Online colorimetry was compared with ion chromatography as a method for the speciation and quantification of the chemical species of P supplied in polyphosphate fertilizers.

Ion chromatography was able to speciate all of the P species supplied in polyphosphate fertilizer, whereas colorimetry detected only P in solution as orthophosphate and, by the difference between the measurement of digested and undigested samples, total condensed P species. Ion chromatography had a detection limit of 0.02 mg P L?1 for orthophosphate, 0.03 mg P L?1 for pyrophosphate, and 0.05 mg P L?1 for tripolyphosphate. The detection limit for orthophosphate measured by colorimetry was the same as that measured by chromatography, but the working range of concentrations was considerably greater for chromatography—from 0.02 to 200 mg P L?1 compared with 0.02 to 2 mg P L?1.  相似文献   

9.
Abstract

A versatile flow injection system for spectrophotometric determination of silicon (Si) in agronomic samples is proposed. For plant and slag analysis (1.0–10.0 mg L?1 Si), the method involves monitoring the yellowish molybdosilicic acid at 410 nm. Soil, fertilizer, water, and sugarcane juice analysis (0.5–5.0 mg L?1 Si) were accomplished by adding a reducing agent, and the molybdenum blue compound that formed was monitored at 735 nm. Flexibility of the method allows determination in a variety of matrices involving a wide range of concentrations. Beer's law is followed up to 20.0 mg L?1 Si (r<0.9997; n=6) for analysis at 410 nm and up to 10.0 mg L?1 Si (r<0.9998; n=6) at 735 nm. For the yellow‐color and blue‐color methods, the detection limits were estimated as 0.5 and 0.1 mg L?1 Si. Measurement frequency for both methods is approximately 75 h?1 using 48 mg of ammonium heptamolybdate, 80 mg of oxalic acid, and 24 mg of ascorbic acid per determination. Results are precise (r.s.d.>0.1%, n=10) and in agreement with inductively coupled plasma–optical emission spectroscopy (ICP‐OES). Statistical differences between data sets were not confirmed after applying the Student's ttest at the 95% confidence level (texp=0.195>ttab=2.57) related to n=6.  相似文献   

10.
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L?1, nitrate (NO 3 ? ) decreased from 6.8 to 5.3 mg L?1, total N (TN) decreased from 14.6 to 10.1 mg L?1, and total P (TP) decreased from 1.6 to 1.1 mg L?1. Average removal efficiencies (loading basis) for NO 3 ? , NH 4 + , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 ? was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2?C4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 ? requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.  相似文献   

11.
Sulfur (S) is an essential nutrient in crop plants and one of the components of amino acids (AAs) and proteins. Studies about sulfur efficiency on soybean cultivars [Glycine max (L) Merril] adapted to the tropical and subtropical conditions are still incipient. In Brazil, one experiment under greenhouse conditions evaluated the S-efficiency from eight soybean cultivars. The plants cultivated in a Typic Quartzipsamment received two S rates (0 and 80 mg kg?1). The grain yield (GY), shoot dry weight (SDW), and the relative yield (RY) had influence from the S rates. The cultivars BRS 295RR and BRS 360RR were the most efficient in using the S application. The number of pods per plant (NPP), photosynthetic rate (A), nitrate reductase (N-NO2?), and chlorophyll significantly increased with de 80 mg kg?1 of S. By contrast, the internal concentration of carbon dioxide (CO2) (Ci) was reduced. Similarly, there were increases in the concentration of nitrogen (N), phosphorus (P), magnesium (Mg), and N:S ratio in the leaves and grain, but the K increased only in the leaves. Comparing the cultivars, only the N concentration in the leaves and the Mg in the grain had non-significant differences.  相似文献   

12.
《Journal of plant nutrition》2013,36(10):1859-1874
Abstract

In a pot experiment, sterilized sandy soil (irrigated with Long-Ashton nutrient solution containing a half of the recommended dose of ZnSO4 · 7H2O) was used to study the effects of zinc (Zn) foliar-application, and soil biofertilization on some physiological traits of wheat (Triticum aestivum cv. Sakha 155) plant grown for 70 days in greenhouse under controlled conditions. The treatments comprised different levels of the foliar applied Zn (0, 25, 50, 100, and 200 mg L?1) which was added in the form of ZnSO4 · 7H2O, and supported by Azotobacter chroococcum (Ar) and/or Azospirillum brasilense (Am) isolates. All test attributes (minerals, photosynthesis, metabolites, and dry matter accumulation) were significantly enhanced by the moderate doses of Zn (25 and 50 mg L?1), while a contrary trend was observed in case of the higher levels (100 and 200 mg L?1). Applying the bacterial fertilizers (Ar, Am) to the experimental soil, influenced the most test characters in the direction of improving growth, photosynthesis and dry matter accumulation by the plant. This response was more evident in the case of applying Ar plus Am than Am than Ar, particularly, at the elevated levels of Zn. Zinc application at 50 mg L?1 supported by the biofertilization with Ar plus Am resulted in the highest shoot contents of nitrogen (N), magnesium (Mg), manganese (Mn), carbohydrate and total-soluble proteins. Superior values of the photosynthetic criteria (Chl a + b concentration and photosystem II activity) as well as shoot concentration of indole-3-acetic acid, and dry matter accumulation by shoots and roots were obtained by the same treatment. The highest phosphorus (P) concentration was achieved at 25 mg L?1 Zn supported by Ar plus Am. Irrespective of the bacterial inoculum, shoot contents of potassium (K) and Zn showed a positive correlation with the sprayed dose of Zn.  相似文献   

13.
Abstract

Starch reserves in the lower stem and root are important sources of photoassimilates for completion of reproductive development in cotton. The objective of this research was to determine if carbohydrate levels in the lower stem and roots have been altered because of more than 100 years of breeding efforts. In 2001 and 2002, 33 cultivars released from 1900 to 2000 were evaluated. In addition, two elite lines were included in 2002. Plants were sampled at first bloom and cutout. Tissues were analyzed for starch content and concentration by using a colorimetric technique. Analysis of variance by year revealed cultivar differences for starch concentration at both sample times, but starch content was only significant at first bloom in 2002. These differences, though, did not show a strong relationship with release date, indicating that a century of breeding efforts had not altered stem and root starch dynamics. Orthogonal contrast did reveal differences in starch content and concentration between obsolete, modern, and elite lines. However, these differences were not consistent across experimental years. At first bloom in 2001, modern cultivars had lower root and stem starch concentrations, 69.8 and 63.6 mg g?1, compared to 94.5 and 84.8 mg g?1 for the obsolete lines. Modern cultivars also had lower root starch content, 537.5 mg, compared to 784.4 mg for the obsolete lines. At cutout in 2001, modern cultivars had lower root and stem starch concentrations, 20.6 and 20.9 mg g?1, compared 39.7 and 32.4 mg g?1 for the obsolete lines. Modern cultivars also had lower stem starch content, 349.0 mg, compared to 518.4 mg for the obsolete lines. These same trends were not seen in 2002. In 2002, modern cultivars did not differ from obsolete cultivars for all parameters. Elite lines, though, had higher stem starch concentrations at cutout, 56.9 mg g?1 compared to 39.5 and 46.6 mg g?1 for the obsolete and modern lines, respectively. Elite lines also had higher stem starch contents at cutout, 318.6 mg compared to 181.7 and 195.7 mg for the obsolete and modern lines, respectively. This higher stem starch concentration and content for elite lines may indicate higher photosynthetic rates. Environmental conditions seem to affect starch dynamics more than genetics when one considers the high significance of year on most data in this study.  相似文献   

14.
Hydroponic and pot experiments were conducted to assess the uptake of heavy metals (Cd and Zn) by a common crop plant, African basil, Ocimum gratissimum. In addition, the effects of soil amendments, hydroxyapatite (HA) and cow manure on plant growth and metal accumulations were compared. In the hydroponic study, plants were exposed to various concentrations of Cd (2.5 and 5 mg L?1) and Zn (10 and 20 mg L?1) for 15 days. O. gratissimum was shown to be a Cd accumulator more than a Zn accumulator. Cadmium concentration in its shoots exceeded 100 mg kg?1. In the pot experiments, soils from a heavily Cd-contaminated site (Cd 67.9 mg kg?1 and Zn 2,886.8 mg kg?1) were treated with cow manure and HA at the rates of 10% and 20% (w/w), and 0.75 and 1.5% (w/w), respectively. Plants were grown in the greenhouse for 3 months. The addition of cow manure resulted in the highest biomass production and the lowest accumulations of Cd in plant parts, while HA was more efficient than cow manure in reducing Zn uptake. Leaves of African basil showed a decreased Cd concentration from 1.5 to 0.3 mg kg?1 (cow manure) and decreased Zn concentration from 69.3 to 34 mg kg?1 (HA). This clearly demonstrates the efficiency of HA and cow manure in reducing metal content in leaves of plants grown on high metal-contaminated soil to acceptable or close to acceptable values (0.2 mg kg?1 for Cd, 99.4 mg kg?1 for Zn).  相似文献   

15.
Two greenhouse experiments were conducted simultaneously to evaluate polymer-coated and common urea in upland rice production. The nitrogen (N) levels used for both the N sources were from 0 to 400 mg kg?1 of soil. Maximum grain yield was obtained with the addition of 167 mg N kg?1 polymer-coated urea and 238 mg N kg?1 common urea. Maximum value of other plant traits was obtained with N applied from 233 to 313 mg kg?1 depending on plant traits and N source. Nitrogen-use efficiency (NUE) decreased with increasing N rate in the two N sources. Based on results of growth, yield, and yield components, and NUE it can be concluded that the N sources were equally effective in upland rice production. Base saturation, pH, and exchangeable calcium (Ca) increased with increasing N rates while iron (Fe), manganese (Mn), and copper (Cu) contents decreased with the increasing N rates.  相似文献   

16.
The rate at which dried soils are rewetted can affect the quantities and forms of nutrients in leachates. Both dried and moist replicated (n?=?3) samples of two contrasting grassland soil types (clayey vs brown earth) were irrigated during laboratory experiments with identical total amounts of water, but at different rates, ranging from 0 h, increasing by 30-min increments up to 4 h, and additionally a 24-h rewetting rate. Total P concentrations in leachates from dried samples of both soils generally decreased as rewetting rate increased, ranging from 2,923?±?589 μg P L?1 (0.5 h rewetting rate) to 731?±?46.0 μg P L?1 (24 h, clayey soil) and 1,588?±?45.1 μg P L?1 (0.5 h) to 439?±?25.5 μg P L?1 (24 h brown earth). Similar patterns in concentrations occurred for molybdate reactive P (MRP), although concentrations were generally an order of magnitude lower, indicating that the majority of the leached P was probably organic. The moist brown earth leached relatively high concentrations of MRP (maximum 232?±?10.6 μg P L?1, 0.5 h), unlike the moist clayey soil (maximum 20.4?±?10.0 μg P L?1, 0 h). The total oxidised N concentrations in leachates were less affected by rewetting rate, although longer rewetting rates resulted in decreased concentrations in leachates from the dried samples of both soils. The difference in responses to rewetting rates of the two soils is probably due to differences in the fate of the microbial biomass and adsorption properties in the soils. Results show that soil moisture could be an important factor in regulating nutrient losses and availability, especially under changing patterns of rainfall predicted by future climate change scenarios.  相似文献   

17.
The effect of increasing chloride content in nutrient solution on nutrient composition in root environment, interaction of nutrients in leaves and yield of greenhouse tomato cv. ‘Grace F1’ grown in rockwool were searched. In Experiment I (2004–2005) the levels of 15, 30, 60, and 90 mg Cl·L?1 but in Experiment II (2006) 30, 60, 90 and 120 mg Cl·L?1 of nutrient solution were tested. The sources of chloride were water (9.6–10.7 mg Cl·L?1) and calcium chloride (CaCl2·2H2O) but the rest of nutrients and sodium in all treatments were on the same levels. It was found that increasing content of chloride from 15 to 60 mg Cl·L?1 enhanced the total and marketable fruit yield. Within the range of 60 to 90 mg Cl·L?1 the yield was on the optimum level but the content of 120 mg Cl·L?1 declined it. Increasing chloride content in the nutrient solutions was reflected in rising of chlorine content in leaves. The concentration of chloride above 60 mg C·L?1 reduced the content of nitrogen but above 90 mg C·L?1 declined the content of calcium, sulfur and zinc in leaves. The antagonism between Cl:N, Cl:Ca: Cl:S and Cl:Zn was appeared. More variable interaction were between Cl:K and Cl:B. At the low levels of chloride, from 15 to 60 mg Cl·L?1, potassium and boron content were decreased but at the higher ones, from 90 to 120 mg·L?1, these nutrients had increasing course. It was not found out the effect of chloride contents on macro and microelement contents in nutrient solution emitted from drippers however their content upraising in root medium (rockwool). The highest increase was found out for Na 95.1 and 64.9 % (Exp. I and II - respectively), next for Ca (76.0, 70.1 %), Cu (62.5 and 71.0 %), Cl (43.6, 24.4), B (33.3, 21.0 %), N-NO3 (30.4, 49.6 %), Zn (29.5, 32.8 %), S-SO4 (25.9, 25.5 %), K (24.5, 24.1 %), Fe (19.8, 19.2 %), Mn (17.5, 21.3 %) and Mg (14.9, 11.7). Advantageous effect of chloride on tomato yield justified the need to introduce for the practice adequate chlorine nutrition, and recommend to maintain 60 to 90 mg Cl·L?1 in nutrient solution. The best yield appeared when content of chlorine in leaves (8th or 9th leaf from the top) was in the range 0.48-0.60 % of Cl in d. m.  相似文献   

18.
A flow injection analysis (FIA) method capable of automation for molybdate reactive phosphorus (P) determination in soil extracts is described. Results obtained using this method in three soil extracts [calcium chloride (CaCl2), Olsen, and Mehlich I] were the same as those provided by the manual molybdate blue colorimetric method. Linear range extending to 2 mg P L?1, detection limits ranging from 6 to 26 µg L?1 depending on the soil extract, and accurate recoveries from P‐spiked samples were achieved. The sensitivity of the system was around 0.3 absorbance units per mg P L?1, and the sampling frequency was 72 samples h?1, higher than those described for most of the flow injection methods.  相似文献   

19.
This study investigated the effect of different boron concentrations on growth and physiological characteristics of olive plants. The absorption of some macronutrients and distribution of boron were also examined. This research was carried out in a completely randomized design with factorial arrangements including six boron levels (0.2, 10, 20, 30, 40 and 50 mg L?1) and two cultivars (Amygdalolia and Konservolia), with four replications for each treatment. Two-year old seedlings were treated with Hoagland nutrient solution containing different boron (B) concentration for 4 months. Chlorophyll fluorescence, fresh and dry weight of leaves, stems and roots as well as absorption of macronutrients decreased in both cultivars as the boron level were increased. Diagnostic symptoms of boron toxicity appeared 45 and 75 days after planting for Amygdaloila and Konservolia at 30, 40 and 50 mg L?1; and 40 and 50 mg L?1 of boron, respectively. Our results showed that at a higher level of B, the Konservolia cultivar maintained more B concentration in its root than Amygdalolia cultivar; however, B content in young leaves of Amygdalolia was higher than Konservolia. It seems that Konservolia cultivar could accumulate B in its roots and prevents its translocation to the leaves through an internal tolerance mechanism; therefore, Konservolia shows greater tolerance to high concentrations of boron compared to Amygdalolia.  相似文献   

20.
Runoff may cause losses of micronutrients from soils. This can result in environmental problems such as contaminant transfers to water or a decrease in soil fertility. Appropriate soil management may reduce these micronutrient losses. This study examined the effect of applying crop residues to the soil surface on iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) losses by runoff. Runoff and sediment yield were measured on 1-m2 plots using a rainfall simulator with constant 65 mm h?1 intensity. Eight successive rainfall applications were performed at 65 mm each. Corn (Zea mays L.) straw was applied to plots at rates ranging from 0 to 8 t ha?1. Both total and dissolved concentrations of the micronutrients studied were decreased by corn straw applications. After 520 mm cumulative rainfall, total soil losses ranged from 150 to 15354 kg ha?1 depending on the amount of corn straw applied. Total micronutrient concentrations in runoff were as follows: Fe from 14.98 to 611.12 mg L?1, Mn from 0.03 to 0.61 mg L?1, Cu from 0.10 to 1.43 mg L?1, and Zn from 0.21 to 5.45 mg L?1. The relative contribution of the dissolved fraction to the total micronutrient content loss was low, but varied depending on the nutrient, being less than 1 percent for Fe and Mn and almost 10 percent for Zn. Total and dissolved concentrations in runoff of the studied elements decreased exponentially as the rate of applied corn straw increased. In conclusion, the addition of corn straw to soil reduced micronutrient losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号